izpis_h1_title_alt

Jedrne metode : delo diplomskega seminarja
ID Zmrzlikar, Jakob (Author), ID Pretnar, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (516,88 KB)
MD5: BD129D575E49543DEEB816D4AA45EA44

Abstract
V diplomskem delu predstavimo jedrne funkcije in njihovo uporabo v jedrnih metodah. Predstavimo splošen problem binarne klasifikacije in njegovo rešitev v primeru homogene linearne ločljivosti podatkov. Preko Coverjevega izreka spoznamo potrebo po jedrnih funkcijah. Ogledamo si Hilbertove prostore z reproducirajočim jedrom ter dokažemo Moore–Aronszajnov in reprezentacijski izrek. Navedemo nekaj primerov jedrnih funkcij in pravila za sestavljanje novih. Podrobneje spoznamo tri pomembne jedrne metode: metodo podpornih vektorjev, analizo glavnih komponent in Gaussove procese. Spoznamo tudi povezavo med Gaussovimi procesi in drugimi metodami strojnega učenja.

Language:Slovenian
Keywords:jedrne funkcije, Hilbertovi prostori z reproducirajočim jedrom
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-131032 This link opens in a new window
UDC:517.9
COBISS.SI-ID:77548803 This link opens in a new window
Publication date in RUL:22.09.2021
Views:844
Downloads:107
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Kernel methods
Abstract:
In this work we present kernel functions and their use in kernel methods. We state the general problem of binary classification and its solution in case of homogeneously linearly separable dataset. Through Cover's theorem we recognize the need for kernel functions. We present reproducing kernel Hilbert spaces and prove the Moore–Aronszajn and representer theorems. We take a look at a few examples of kernel functions and the rules for constructing new ones. We cover three important kernel methods in depth: support vector machines, principal component analysis and Gaussian processes. We also present the link between Gaussian processes and other machine learning methods.

Keywords:kernel functions, reproducing kernel Hilbert spaces

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back