Details

Dejavniki uspešnega uvajanja celovite programske rešitve v podjetje : magistrsko delo
ID Plavšić, Maja (Author), ID Hočevar, Marko (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://www.cek.ef.uni-lj.si/magister/plavsic4260-B.pdf This link opens in a new window

Language:Slovenian
Keywords:informatika, poslovna inteligenca, informacijska tehnologija, informacijski sistemi, podjetje, poslovanje podjetja, projekti, primeri
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:EF - School of Economics and Business
Place of publishing:Ljubljana
Publisher:[M. Plavšić]
Year:2021
Number of pages:III, 65 str.
PID:20.500.12556/RUL-130698 This link opens in a new window
UDC:659.2
COBISS.SI-ID:71681795 This link opens in a new window
Publication date in RUL:18.09.2021
Views:1842
Downloads:49
Metadata:XML DC-XML DC-RDF
:
PLAVŠIĆ, Maja, 2021, Dejavniki uspešnega uvajanja celovite programske rešitve v podjetje : magistrsko delo [online]. Master’s thesis. Ljubljana : M. Plavšić. [Accessed 25 March 2025]. Retrieved from: http://www.cek.ef.uni-lj.si/magister/plavsic4260-B.pdf
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Factors of successful implementation of enterprise resource planning
Keywords:informatics, business intelligence system, information technology, information systems, enterprises, company performance, projects, cases

Similar documents

Similar works from RUL:
  1. DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION
  2. Part of speech tagging of slovene language using deep neural networks
  3. Automatic classification of buildings with deep learning
  4. Object detection and classification in aquatic environment using convolutional neural networks
  5. Superposition and compression of deep neutral networks
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. The preparation of photos' dataset and its classification using deep neural networks
  3. Prediction of geospatial raster data using convolutional neural networks
  4. Development of an advanced system for lane detection on GPU platforms
  5. Comparison of different deep neural network learning algorithms in autonomous driving

Back