izpis_h1_title_alt

Vsote izjemnih enot : delo diplomskega seminarja
ID Lemut, Ajda (Author), ID Dolžan, David (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (486,50 KB)
MD5: 00269AF8E3A3683E2D90FB5952D6E10E

Abstract
Element $u$ iz kolobarja je izjemna enota, če sta $u$ in $1-u$ enoti, torej če sta $u$ in $1-u$ obrnljiva. V delu se najprej posvetimo kolobarjem ostankov ${\mathbb Z}_n$, nato pa sledi posplošitev na poljubne končne komutativne kolobarje z enico. V obeh primerih najprej dokažemo formulo za izračun števila izjemnih enot, nato pa še formulo za izračun predstavitev poljubnega elementa iz kolobarja kot vsoto $k$ izjemnih enot.

Language:Slovenian
Keywords:izjemne enote, kolobar ostankov, končni kolobar
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-130430 This link opens in a new window
UDC:512
COBISS.SI-ID:76460291 This link opens in a new window
Publication date in RUL:15.09.2021
Views:830
Downloads:84
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Sums of exceptional units
Abstract:
Element $u$ from some ring is an exceptional unit if both $u$ and $1-u$ are units, so if both $u$ and $1-u$ are invertible. In this work we first focus on the residue class rings modulo $n$, and then generalize it to all finite commutative rings with identity. In both cases, we first prove the formula for calculating the number of exceptional units, and then the formula for calculating the representations of any element in the ring as the sum of $k$ exceptional units.

Keywords:exceptional units, residue class ring, finite ring

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back