izpis_h1_title_alt

Uporaba strojnega učenja na vgrajenih platformah
KLANČNIK, BIAN (Author), Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (434,04 KB)
MD5: 48EAE5B1A76F51077CE6812C557EB723

Abstract
V zadnjem desetletju se je strojno učenje precej razvilo in prodira na vsa področja informacijskih tehnologij. Dandanes večina računalniških sistemov uporablja strojno učenje na tak ali drugačen način. Poleg tega pa je zelo napredovalo tudi strojno učenje na manj zmogljivih napravah. Cilj diplomske naloge je preizkusiti učinkovitost obstoječih orodij za strojno učenje na manj zmogljivih napravah. Osredotočili smo se na naprave ARM. Na osebnem računalniku smo zgradili več različnih modelov v različnih ogrodjih za grajenje modelov strojnega učenja. Modele smo serializirali s pomočjo orodij za serializacijo in jih na koncu pognali na Raspberry Pi. Zgradili smo več klasifikacijskih in en regresijski model. Merili smo uspešnost modelov in čas, ki ga model na določeni napravi porabi za napovedovanje. Rezultati so pokazali, da se uspešnost modelov na različnih napravah ne razlikuje. Razlika v izmerjenem času pa se je med napravami precej razlikovala.

Language:Slovenian
Keywords:strojno učenje, vgrajene naprave, serializacija modelov
Work type:Bachelor thesis/paper (mb11)
Tipology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of computer and information science
Year:2021
COBISS.SI-ID:77621507 This link opens in a new window
Views:64
Downloads:7
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:English
Title:Machine learning on embedded platforms
Abstract:
Machine learning has developed considerably in the last decade and is penetrating all areas of information technology. Today, most computer systems use machine learning in one way or another. In addition, machine learning on less powerful devices has advanced greatly. The aim of the diploma thesis is to test the effectiveness of existing machine learning tools on less powerful devices. We focused on ARM devices. We built several different models on a personal computer in different frameworks to build machine learning models. We serialized the models using serialization tools and eventually ran them on a Raspberry Pi. We built several classification and one regression model. We measured the performance of the models and the time that the model spends on a particular device to predict. The results showed that the performance of the models on different devices did not differ. The difference in measured time, however, varied considerably between devices.

Keywords:machine learning, embedded devices, model serialization

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back