Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Detekcija prask na pokrovih avtomobilskih koles z računalniškim vidom
ID
Zupanič, Matjaž
(
Author
),
ID
Kristan, Matej
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(27,57 MB)
MD5: E6F0A44003223572D9A682FEADA852A7
Image galllery
Abstract
Detekcija prask na platiščih avtomobilov s klasičnimi pristopi računalniškega vida ne daje dobrih rezultatov. Zato, ker so platišča različnih oblik, narejena iz različnih materialov in raznih barv. Tudi praske so različnih oblik, barv in velikosti, večrkrat tudi slabo vidne. Na platiščih se pojavlja tudi umazanija, ki dodatno ovira zaznavo. Zaradi tega je potrebna uporaba močnejših orodij. To so konvolucijska nevronska omrežja, ki doživljajo bliskovit razvoj nekaj zadnjih let. V diplomski nalogi analiziramo možnost zaznavanja prask na platiščih z globoko nevronsko mrežo. Za potrebe zaznave je potrebna segmentacija vsake točke vhodne slike. Ker so praske v primerjavi s celotnim platiščem majhne, smo se odločili uporabiti polno konvolucijsko omrežje U-Net. V namen diplome je bila pripravljena zbirka označenih fotografij, ki je lahko izhodišče za nadaljnje raziskave. Razvit model uspešno detektira praske, kljub mali učni množici. Na nevideni testni množici pripravljeni le za namen evalvacije je po metodi mIoU dosegel točnost 62,8\,\%. V primeru izboljšav in dodelav pa bi naš detektor prask bil primeren tudi za industrijsko rabo.
Language:
Slovenian
Keywords:
konvolucijska nevronska omrežja
,
U-Net
,
segmentacija
,
platišča
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2021
PID:
20.500.12556/RUL-130327
COBISS.SI-ID:
77571331
Publication date in RUL:
13.09.2021
Views:
1825
Downloads:
178
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ZUPANIČ, Matjaž, 2021,
Detekcija prask na pokrovih avtomobilskih koles z računalniškim vidom
[online]. Bachelor’s thesis. [Accessed 24 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=130327
Copy citation
Share:
Secondary language
Language:
English
Title:
Scratch detection on car wheel covers using computer vision
Abstract:
Detection of scratches on car rims with classical computer vision approaches does not produce good results, because the rims are of different shapes, made of different materials and in different colors. Scratches are also in different shapes, colors and sizes. Scratches are often poorly visible and there is also dirt on rims, which further impedes visibility of them. This requires the use of more powerful tools, like convolutional neural networks that have been experiencing rapid development over the last few years. In thesis we analyze possibility of scratch detection on car rims with deep neural network. Segmentation of each point in the input image is required for detection purposes. Because the scratches are small compared to the entire region of the rim, we decided to use a fully convolutional network U-Net. For a purpose of the thesis, a collection of annotated pictures was prepared, which can be a starting point for further research. The developed model successfully detects scratches, despite the small learning set. On an unseen test set prepared for evaluation purposes only, it achieved 62.8\,\% accuracy using the mIoU method. With further improvements and refinements, our scratch detector would also be suitable for industrial use.
Keywords:
convolutional neural networks
,
U-Net
,
segmentation
,
rims
Similar documents
Similar works from RUL:
Časovne vrste in razvrščanje z zavrnitvijo
Hand Segmentation for Augmented Reality
Pomoč pri igranju klavirja z obogateno resničnostjo
Interpolacija odsevnih sond za hitro upodabljanje odsevnih materialov
Zaznavanje gest v video tokovih na vgrajeni napravi
Similar works from other Slovenian collections:
No similar works found
Back