izpis_h1_title_alt

Stabilnostni odziv zaprtega sistema več povezanih sferičnih membran
ID Dragovan, Toni (Author), ID Brojan, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,37 MB)
MD5: 7D13AD3A098A16B89FE304CFCDA22296

Abstract
V zaključni nalogi obravnavamo stabilnostni odziv zaprtega sistema več povezanih sferičnih membran. Specifično nas zanima relacija med tlakom in pretokom, ki se pojavi med posameznimi membranami, ter odziv zaprtega sistema, če spremenimo vhodne parametre, vezava pa ostane nespremenjena. V našem primeru smo se osredotočili na sisteme z dvema, tremi in štirimi povezanimi sferičnimi membranami ter za vse napisali računalniški program, ki iteracijsko računa dogajanje v sistemu membran, dokler te ne preidejo v ravnovesno stanje. Ugotovili smo, da ob isti vezavi sferičnih membran in variaciji njihovega zaporedja dobimo drugačen odziv sistema. Ob tem smo tudi ugotovili, da pri vezavi treh ali več sferičnih membran te v ravnovesnem stanju ne ostanejo na delu grafa z negativnim naklonom.

Language:Slovenian
Keywords:sferična membrana, Mooney-Rivlin-ov model, Hagen-Poiseuille-ov zakon, nestabilnost, pretok
Work type:Final paper
Typology:2.11 - Undergraduate Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[T. Dragovan]
Year:2021
Number of pages:XIV, 28 str.
PID:20.500.12556/RUL-130226 This link opens in a new window
UDC:532.5:62-278:532.11(043.2)
COBISS.SI-ID:79981059 This link opens in a new window
Publication date in RUL:11.09.2021
Views:946
Downloads:159
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stability response of a closed system of several connected spherical membranes
Abstract:
In the last thesis we discuss the stability response of a closed system of several interconnected spherical membranes. In particular, we are interested in the relationship between pressure and flow that occurs between the individual membranes and in the response of a closed system when we change the input parameters and the connection remains unchanged. In our case, we focused on systems with two, three, and four interconnected spherical membranes and wrote a computer program for all of them that iteratively calculates what happens in the membrane system until they reach equilibrium. We found that the system responds differently when we connect the spherical membranes in the same way and vary their order. We also found that when three or more spherical membranes are connected, they do not remain in the equilibrium state at the part of the graph with a negative slope.

Keywords:spherical membrane, Mooney-Rivlin model, Hagen-Poiseuille law, instability, flow

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back