izpis_h1_title_alt

Primerjava metode Gradient boosting in nevronskih mrež z Uberjevo arhitekturo za napovedovanje prodaje
ID DEBELAK, JAN (Author), ID Možina, Martin (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,09 MB)
MD5: E72942519BB618BDA60B8F3D363BC3AD

Abstract
Diplomska naloga govori o razlikah med metodo Gradient boostinga z regresijskimi drevesi (GBRT) in Uberjevimi nevronskimi mrežami pri napovedovanju prodaje. Napovedovanje prodaje je pomembno zaradi vedno večjega števila izdelkov in omejenega prostora v skladiščih. Obstaja že dolga zgodovina napovedovanja prodaje, ki se razdeli na več dob. Najnovejša med njimi je doba napovedovanja s strojnim učenjem, kamor spadata tudi obravnavani metodi diplomske naloge. Metode so bile testirane na podatkih tekmovanja iz spletne strani Kaggle, kjer je bil cilj tekmovanja napovedati prodajo za 10 različnih Wallmartovih trgovin za obdobje 28 dni.Na splošno je bil bolj uspešen model, ki je uporabljal metodo GBRT, ki se je izkazala bolje na volatilnem in stabilnem obdobju in napovedala bolje, kot Uberjeva arhitektura LSTM (ULSTM). ULSTM se je izkazala bolje v krajših časovnih obdobjih in v enem, kljub splošni prevladi metode GBRT napovedala bolje. Pri večjih naborih atributov se je metoda GBRT izkazala za veliko hitrejšo od ULSTM, prav tako je bila velika razlila pri vplivu naključnega semena na rezultate, kar se je izkazalo za večji problem pri ULSTM. Rezultati testiranja so pokazali, da obstaja veliko razlogov zakaj je Gradient boosting veliko bolj uporabljen pri napovedovanju časovnih serij, kot LSTM.

Language:Slovenian
Keywords:LSTM, Gradient boosting, napoved prodaje, Uber
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-130172 This link opens in a new window
COBISS.SI-ID:77313283 This link opens in a new window
Publication date in RUL:10.09.2021
Views:1143
Downloads:175
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison between Gradient Boosting and Neural Networks with Uber Architecture for Sales Forecasting
Abstract:
The diploma thesis talks about the differences between Gradient boosting with regression trees (GBRT) and Uber neural networks in sales forecasting. Sales forecasting is important because of the ever-increasing number of products and limited space in warehouses. There is a long history of sales forecasts, which is divided into several periods. The latest among them is the period of forecasting through machine learning, which also includes the methods discussed methods. The methods were tested on data from a competition on Kaggle, where the goal of the competition was to predict sales for 10 Wallmart stores for a period of 28 days. In general, the more a successful method was GBRT method, which overall predicted better than Uber’s LSTM architecture (ULSTM). ULSTM performed better in shorter time periods and in one, despite the general dominance of the GBRT method, predicted better. For larger sets of attributes, the GBRT method proved to be much faster than ULSTM and there was also a large difference between the impact of random seed on the results, which proved to be a major problem with ULSTM. Test results showed that there are many reasons why Gradient boosting is much more used in forecasting time series such as LSTM.

Keywords:LSTM, Gradient boosting, sales forecasting, Uber

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back