izpis_h1_title_alt

Fazno odvisni popravki pri detekciji ionizirajočih delcev z nizko vzorčevalno frekvenco
ID Seme, Eva (Author), ID Lipoglavšek, Matej (Mentor) More about this mentor... This link opens in a new window, ID Vencelj, Matjaž (Comentor)

.pdfPDF - Presentation file, Download (6,26 MB)
MD5: BD618C95EC919387CC53A6FADD33D878

Abstract
Pri natančni določitvi časov detekcije visokoenergijskih delcev si v primeru periodičnega vzorčenja s hitrimi pretvorniki ADC pomagamo z interpolacijskimi metodami. V primeru nizke frekvence vzorčenja računsko nezahtevna linearna interpolacija vnaša sistematične napake, ki vodijo v premajhne poročane čase in, še pomembneje, povečan raztros odmikov poročanega časa od pravega časa detekcije. V delu je predstavljena in ovrednotena metoda za popravljanje teh napak, temelječa na strojnem učenju. Opišem tudi, kako s parametrizacijo porazdelitve napak dobimo dobre rezultate tudi v primeru zelo majhnih učnih ansamblov. Na podoben način izboljšamo tudi diskriminacijo nevtronov od žarkov gama na osnovi merjenja oblike sunka v organskih scintilacijskih detektorjih.

Language:Slovenian
Keywords:čas detekcije, linearna interpolacija, nizka frekvenca vzorčenja, kumulativna porazdelitvena funkcija, koincidenčni poskus, diskriminacijske tehnike, nevtroni, žarki gama
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-129884 This link opens in a new window
COBISS.SI-ID:75531779 This link opens in a new window
Publication date in RUL:09.09.2021
Views:875
Downloads:72
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Phase-dependent corrections in ionizing particle detection at low sampling rates
Abstract:
Interpolation methods are commonly used to determine precise detection times of high-energy particles in detectors coupled to fast sampling readout. In undersampled conditions the use of computationally preferred linear interpolation leads to systematic errors that underestimate detection times and, more importantly, increase the variance of the measured times. In this thesis a machine-learning method to correct for these errors is presented and evaluated. I further show how a suitable parametrization of the error distribution allows for good results in cases with very limited learning ensembles. In a similay way, we improve on the pulse-shape method for neutron vs. gamma-ray discrimination in organic scintillation detectors.

Keywords:detection time, linear interpolation, low sampling rate, cumulative distribution function, coincidence experiment, discrimination techniques, neutrons, gamma rays

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back