Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Trikotniki, vložljivi v celoštevilsko mrežo : delo diplomskega seminarja
ID
Šenica, Ana
(
Author
),
ID
Vavpetič, Aleš
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(728,49 KB)
MD5: FB374FCDCC19FE6125C33AC57F034AA4
Image galllery
Abstract
V diplomski nalogi si bomo ogledali karakterizacijo vložljivosti trikotnikov v celoštevilske mreže ${\mathbb Z}^n$ za $n \geq 2$. Pri tem bomo rekli, da je trikotnik vložljiv v ${\mathbb Z}^n$, če je podoben kakšnemu trikotniku v ${\mathbb R}^n$, ki ima oglišča s celoštevilskimi koordinatami. Videli bomo, da je trikotnik vložljiv v ${\mathbb Z}^2$ natanko tedaj, ko so tangensi vseh treh kotov trikotnika racionalna števila ali $\infty$. Enakostranični trikotnik je primer trikotnika, vložljivega v ${\mathbb Z}^3$, ne pa tudi v ${\mathbb Z}^2$. Dokazali bomo, da je trikotnik vložljiv v ${\mathbb Z}^3$ natanko tedaj, ko je vložljiv v ${\mathbb Z}^4$. Kriterij za vložljivost trikotnika v ${\mathbb Z}^4$ (in s tem v ${\mathbb Z}^3$) je, da so tangensi vseh njegovih kotov oblike $\tan{\alpha_i} = q_i \sqrt{k}$, kjer je $k \in {\mathbb Z}$ vsota treh kvadratov celih števil in $q_i \in {\mathbb Q} \cup \{\infty\}$. Izpeljali ga bomo na dva načina, pri čemer si bomo pomagali s podobnostnimi preslikavami, kvaternioni in trikotniškimi enačbami. Obstajajo trikotniki, vložljivi v ${\mathbb Z}^5$, ne pa tudi v ${\mathbb Z}^4$. Za višje dimenzije pa velja, da je trikotnik vložljiv v ${\mathbb Z}^n$ za $n \geq 5$ natanko tedaj, ko je vložljiv v ${\mathbb Z}^5$.
Language:
Slovenian
Keywords:
vložljivost
,
celoštevilska mreža
,
trikotnik
,
trikotniška enačba
,
kvaternioni
,
podobnostna preslikava
,
$n$-simpleks
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2021
PID:
20.500.12556/RUL-129883
UDC:
514
COBISS.SI-ID:
75800067
Publication date in RUL:
09.09.2021
Views:
9878
Downloads:
96
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Triangles embeddable in integer lattice
Abstract:
We give a characterization of the triangles embeddable in ${\mathbb Z}^n$ for $n \geq 2$. A triangle is embeddable in ${\mathbb Z}^n$ if it is similar to a triangle in ${\mathbb R}^n$ whose vertices have integer coordinates. A triangle is embeddable in ${\mathbb Z}^2$ if and only if tangents of all its angles are rational or $\infty$. Equilateral triangle is embeddable in ${\mathbb Z}^3$ but not in ${\mathbb Z}^2$. We show that a triangle is embeddable in ${\mathbb Z}^4$ if and only if it si embeddable in ${\mathbb Z}^3$. A triangle is embeddable in ${\mathbb Z}^4$ (and ${\mathbb Z}^3$) if and only if tangents of all its angles are rational multiples of $\sqrt{k}$, where $k$ is a sum of three squares, or $\infty$. We show this by using similarities of ${\mathbb R}^n$, quaternions and triangle equations. There are triangles embeddable in ${\mathbb Z}^5$ but not in ${\mathbb Z}^4$. A triangle is embeddable in ${\mathbb Z}^n$ for $n \geq 5$ if and only if it is embeddable in ${\mathbb Z}^5$.
Keywords:
embeddability
,
integer lattice
,
triangle
,
triangle equations
,
quaternions
,
similarity
,
$n$-simplex
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back