izpis_h1_title_alt

Aproksimacija razpršenih podatkov z metodo najmanjših kvadratov nad triangulacijami : delo diplomskega seminarja
ID Jagodnik, Lara (Author), ID Grošelj, Jan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,93 MB)
MD5: AE4ACF2543EAAC0165EAC4AA5F9F3E99

Abstract
V diplomskem delu obravnavamo problem aproksimacije razpršenih podatkov z metodo najmanjših kvadratov nad triangulacijami. Definiramo končno dimenzionalni prostor $S_1^0(\triangle)$ zveznih odsekoma linearnih funkcij nad triangulacijo $\triangle$ in ga opremimo z bazo. Baza prostora je sestavljena iz funkcij z lokalnimi nosilci in grafi piramidaste oblike. Podatke aproksimiramo s funkcijo $f \in S_1^0(\triangle)$, ki jo predstavimo kot linearno kombinacijo baznih funkcij. Koeficiente določimo z metodo najmanjših kvadratov. V delu izpeljemo, da lahko koeficiente $f$ izračunamo z reševanjem predoločenega sistema enačb. Predoločen sistem prevedemo v normalni sistem, ki je določen s simetrično in razpršeno matriko. Njena analiza nam zagotovi obstoj in enoličnost aproksimacijske funkcije.

Language:Slovenian
Keywords:triangulacije, metoda najmanjših kvadratov, predoločeni sistemi
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-129789 This link opens in a new window
UDC:519.6
COBISS.SI-ID:75593475 This link opens in a new window
Publication date in RUL:08.09.2021
Views:1515
Downloads:121
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Least squares approximation of scattered data over triangulations
Abstract:
In this paper we consider the problem of least squares approximation of scattered data over triangulations. We define finite dimensional space $S_1^0(\triangle)$ of continuous piecewise linear functions over a triangulation $\triangle$ and equip it with a basis. The basis consists of functions with local supports and pyramid-shaped graphs. Data are approximated by a function $f \in S_1^0(\triangle)$, which is represented as a linear combination of basis functions. The coefficients of the function are determined using the least squares method. We derive that coefficients of a function $f$ can be computed with solving an overdetermined system. The overdetermined system can be solved using the corresponding normal system determined by a symmetric sparse matrix. Its analysis ensures the existence and uniqueness of the approximation function.

Keywords:triangulations, least squares method, overdetermined systems

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back