Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Avtomatska zaustavitev naprave za stepanje smetane s pomočjo metod strojnega učenja
ID
WEISSENBACH, JAN
(
Author
),
ID
Sadikov, Aleksander
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,50 MB)
MD5: 5BE9AFDFD146688BD66EC292D82AD304
Image galllery
Abstract
Diplomska naloga rešuje problem avtomatskega zaustavljanja naprave za stepanje smetane. Problem rešuje z uporabo algoritmov strojnega učenja na podlagi podatkov obremenjenosti motorja. Smetane imajo med seboj zelo različne karakteristike, zato jih je težko prepoznati in napovedati zaustavitev procesa. Opisane so že obstoječe rešitve za omenjen problem, med drugimi uporaba nevronskih mrež in uporaba klasičnega algoritma. Opisani so podatki in ugotovitve, na podlagi katerih smo se odločili za gradnjo petih napovednih modelov glede na maso. Opisane so značilke in razlog zakaj smo jih uporabili pri učenju samih modelov. Prav tako so predstavljeni rezultati omenjenih modelov.
Language:
Slovenian
Keywords:
Strojno učenje
,
klasifikacija
,
MATLAB
,
časovna serija.
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2021
PID:
20.500.12556/RUL-129675
COBISS.SI-ID:
76574211
Publication date in RUL:
07.09.2021
Views:
1150
Downloads:
65
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Automated stopping of the cream-whipping machine using machine learning
Abstract:
This thesis solves the problem for automatic stop of a device for whipping cream. The problem is solved using classic machine learning algorithms based on motor load. Creams have different characteristics and are hard to recognise and it is even harder to predict the stopping point. It describes already existing solutions such as usage of neural networks and classic algorithm. We have described used data and findings based on which we have created five different classification models. We have described used statistic metrics and presented model results.
Keywords:
Machine learning
,
classification
,
MATLAB
,
time-series.
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back