izpis_h1_title_alt

Razvoj elektronike za FEspirator V3 : diplomsko delo
ID Pivk, Kristan (Author), ID Jankovec, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,48 MB)
MD5: C722A6D09C781BBB8070D0A9C702A3C5

Abstract
FEspirator - pandemski ventilator je projekt fakultete za elektrotehniko, Univerze v Ljubljani. Namenjen je uporabi v primeru nenadnega primanjkovanja medicinskih ventilatorjev. Projekt je spodbudil izbruh pandemije COVID-19 in spomladi 2020 so v nekaj tednih na fakulteti izdelali delujoč medicinski ventilator, ki s stiskanjem dihalnega balona predihava bolnika. Izdelana in preizkušena sta bila dva prototipa, v1 in v2, ki sta bila uspešno preizkušena na simulatorju pacienta v simulacijskem oddelku Univerzitetnega kliničnega centra v Ljubljani. Ker se je v tistem času epidemija že umirila, hkrati pa smo dobili dovolj medicinskih ventilatorjev, naprav nismo izdelali v večjih količinah, smo pa vse pridobljene izkušnje s prodom uporabili v razvoju nove verzije, imenovane FEspirator V3. Moja naloga je bila izdelava elektronike za FEspirator V3. Elektroniko smo načrtali in izdelali v celoti na enem tiskanem vezju z mikrokrmilnikom družine STM32G4, napajanjema sistema iz omrežja ali baterije, potrebnimi senzorji za krmiljenje stiskanja balona ter zvočnim alarmnim sistemom. Za stiskanje balona smo uporabili motor servovolana v avtomobilu, ki se mu pošilja zahteve za navor preko vodila CAN. Ker so na prejšnji verziji uporabili drug mikrokrmilnik iste družine ter motor s kontrolo preko močnostnega mostiča s PWM signalom, smo morali prilagoditi kodo ter dodati vmesnik za povezavo CAN. Vezje smo vgradili v prototip ventilatorja in ga povezali na pnevmatsko vezje. Umerili smo senzorje pozicije, tlaka in pretoka in nastavili mejne vrednosti navora motorja. Po začetnih težavah na vezju in komunikaciji z motorjem, ki smo jih uspešno odpravili, je ventilator začel delovati po pričakovanjih. Izkazalo se je, da navor izbranega motorja presega potrebe navora te naprave, komunikacijo CAN pa je potrebno še optimizirati, da bi lahko dosegli želeno odzivnost pod 10 ms.

Language:Slovenian
Keywords:medicinski ventilator, FEspirator V3, elektronika, tiskano vezje, STM32G4, vodilo CAN
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Electrical Engineering
Place of publishing:Ljubljana
Publisher:[K. Pivk]
Year:2021
Number of pages:XIV, 80 str.
PID:20.500.12556/RUL-129229 This link opens in a new window
UDC:621.38:615.816-78(043.2)
COBISS.SI-ID:74668803 This link opens in a new window
Publication date in RUL:30.08.2021
Views:1248
Downloads:143
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of electronics for FEspirator V3 : visokošolski strokovni študijski program prve stopnje Aplikativna elektrotehnika
Abstract:
FEspirator - pandemic ventilator is a project of the Faculty of Electrical Engineering, University of Ljubljana. It is intended for use in an event of a sudden shortage of medical ventilators. This project was inspired by the outburst of COVID-19 pandemic and in spring 2020 in the extent of a few weeks a working medical ventilator was made the faculty members and associates, which ventilates the patient by compressing a bag valve mask. Made and tested were two prototypes, v1 and v2, which were successfully tested on patient simulator in simulation department of University medical centre Ljubljana. Because the epidemic already got better at the time and we got enough medical ventilators, we didn’t make the devices in higher numbers, but we promptly used all the experience in the development of a new version, named FEspirator V3. My task was development of the electronics for FEspirator V3. We developed and made electronics for this version entirely on one printed circuit board (PCB) with STM32G4 family microcontroller, powering from network or battery supply, needed sensors for controlling the compression of bag valve mask and sound alarm system. For the compression of bag valve mask we used a motor for power steering in a car, which receives requests for torque from microcontroller via CAN bus. On the previous version they used a different microcontroller of the same family and a motor controlled via power bridge with PWM signal, so some adjustments of the program code and a CAN communication interface were required. We installed the circuit into prototype of the ventilator and connected it to the pneumatic circuit. We adjusted sensors for position, pressure and flow and set border values of torque for motor. After initial problems on the circuit and in communication with motor, which we solved successfully, ventilator started working as expected. It turned out that torque of the chosen motor exceeds the torque needed for this device and CAN communication needs to be optimised do that we could get the desired response time under 10 ms.

Keywords:medical ventilator, FEspirator V3, electronics, printed circuit board, STM32G4, CAN bus

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back