izpis_h1_title_alt

Generiranje slovenskega govora na podlagi učnih množic več govorcev
ID ŠABANOV, TOM (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (967,58 KB)
MD5: 509BDEA179B8AB53622826C79841113B

Abstract
V diplomskem delu smo naslovili problem sinteze slovenskega govora na podlagi sorazmerno majhne učne množice. Opisali smo starejše pristope sinteze govora, kot sta artikularna in formantna sinteza, ter sodobne pristope sinteze z združevanjem enot in sinteze govora s pomočjo globokih nevronskih mrež. Ustvarili smo različne podatkovne množice iz 30 ur govora štirih govorcev, ki smo jih uporabili za sintezo govora. Uporabili smo arhitekturi ForwardTacotron za generiranje mel-spektrogramov ter Hifi-GAN za pretvorbo teh spektrogramov v zvočne signale. Ustvarili smo splošni model za moški govor, ki ga je možno prilagoditi na nove govorce. Najboljši ustvarjeni sistem dosega dobro povprečno oceno poslušalcev (4.07 na lestvici od 1-5) in daje vtis naravnega govora.

Language:Slovenian
Keywords:sinteza slovenskega govora, globoke nevronske mreže, model Tacotron
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-129214 This link opens in a new window
COBISS.SI-ID:75236355 This link opens in a new window
Publication date in RUL:30.08.2021
Views:1353
Downloads:145
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Slovene speech synthesis using multi-speaker datasets
Abstract:
In the thesis, we addressed the problem of Slovene speech synthesis based on relatively small data set. We described older approaches to speech synthesis like articular and formant synthesis, and more modern approaches like unit selection and speech synthesis with deep neural networks. We created a dataset consisting 30 hours of speech from four speakers for use with speech synthesis. We used ForwardTacotron architecture for generating mel-spectrograms and Hifi-GAN architecture for generating waveforms from these spectrograms. We created a basic model for male speech, which can be fine-tuned for new speakers. The best system we created achieved a good mean opinion score of listeners (4.07 on a scale 1-5) that simulates natural speech.

Keywords:slovene speech synthesis, deep neural networks, Tacotron model

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back