Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Analiza zvočnih posnetkov glasnega branja za presejalni test disleksije
ID
URANKAR, TAJDA
(
Author
),
ID
Žabkar, Jure
(
Mentor
)
More about this mentor...
,
ID
Košak Babuder, Milena
(
Comentor
)
PDF - Presentation file,
Download
(1,04 MB)
MD5: FA62EBE2072FD82302943FA29B02B8CF
Image galllery
Abstract
Disleksija spada med specifične učne težave in je genetsko pogojena. Zgodnje prepoznavanje prvih znakov je zelo pomembno in v diplomskem delu smo pokazali, da lahko z različnim izborom atributov in algoritmi to tudi storimo. Različni računalniški sistemi bi lahko že danes hitro in objektivno odkrili rizične znake za nastanek disleksije v zgodnjih letih in tako bi lahko otrokom nudili ustrezno pomoč že v začetku šolanja, ko težave še niso tako izrazite. V tem diplomskem delu se osredotočimo na prepoznavanje oseb z disleksijo z analizo podatkov pridobljenih iz transkripcije zvočnih posnetkov glasnega branja. Med seboj primerjamo in analiziramo različne algoritme in metode strojnega učenja in podamo rezultate. V nalogi smo ugotovili, da z različnimi algoritmi strojnega učenja že na manjšem številu primerov v učni množici dobro napovemo nagnjenost k disleksiji.
Language:
Slovenian
Keywords:
disleksija
,
presejalni test
,
napovedovanje
,
strojno učenje
,
analiza podatkov
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:
2021
PID:
20.500.12556/RUL-128929
COBISS.SI-ID:
78872835
Publication date in RUL:
18.08.2021
Views:
2262
Downloads:
143
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
URANKAR, TAJDA, 2021,
Analiza zvočnih posnetkov glasnega branja za presejalni test disleksije
[online]. Bachelor’s thesis. [Accessed 19 May 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=128929
Copy citation
Share:
Secondary language
Language:
English
Title:
Audio recordings analysis of aloud reading for a dyslexia screening test
Abstract:
Dyslexia is a specific learning difficulty that is genetic in origin. It is very important to predict the predisposition to dyslexia at an early age. In this thesis, we show that we can predict dyslexia with a different attributes and machine learning algorithms. Various computer systems could quickly and objectively detect the predisposition to dyslexia at an early age and thus be able to offer children appropriate help at the very beginning of their education when the problems are not yet noticeable. In this thesis, we focus on the identification of children with dyslexia by analyzing data obtained from the transcription of audio recordings of reading aloud. We compare and analyze different algorithms and machine learning methods and give results. In the thesis, we found that we can predict the predisposition to dyslexia well with different machine learning algorithms even with a small number of cases.
Keywords:
dyslexia
,
screening test
,
prediction
,
machine learning
,
data analysis
Similar documents
Similar works from RUL:
Business process optimization at used car remarketing department
Prenova poslovnih procesov v podjetju Birox
Analiza projekta uvedbe rešitve ERP v izbranem živilskem podjetju
Analiza vpliva uvajanja sistema CRM na preoblikovanje poslovnih procesov v izbranem podjetju
Vpliv čustev na motiviranost tehničnega osebja v izbranem podjetju
Similar works from other Slovenian collections:
Optimizacija procesa od prejema naročila do dostave spletnim kupcem v izbranem podjetju
Reinženiring procesa proizvodnje v izbranem podjetju
Prenova poslovnega procesa v izbranem podjetju
Back