Details

Computer vision on embedded devices for natural user interfaces
ID JUVAN, MARK (Author), ID Čehovin Zajc, Luka (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,51 MB)
MD5: 04BF32ED7BBFD4DF415531DCB89E3531

Abstract
In this diploma thesis, a prototype of a natural user interface concept using DepthAI is presented. DepthAI is an embedded device capable of running complex computer vision algorithms independently, efficiently and with low power consumption. Our interface concept uses DepthAI to run pre-trained convolutional neural networks for face and hand detection. Face and hand positions are then interpreted as gestures, which are used to navigate the tree structure the interface runs on. To evaluate our system in a real-world information display scenario, a group of volunteers was asked to participate. Their feedback was predominantly positive which confirms the feasibility of the presented concept.

Language:English
Keywords:DepthAI, embedded computer vision, convolutional neural networks, human-computer interaction, gestures
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-128928 This link opens in a new window
COBISS.SI-ID:78873091 This link opens in a new window
Publication date in RUL:18.08.2021
Views:2099
Downloads:176
Metadata:XML DC-XML DC-RDF
:
JUVAN, MARK, 2021, Computer vision on embedded devices for natural user interfaces [online]. Bachelor’s thesis. [Accessed 22 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=128928
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Računalniški vid na vgrajenih napravah za naravne uporabniške vmesnike
Abstract:
V okviru te diplomske naloge je predstavljen prototip zasnove naravnega uporabniškega vmesnika, ki uporablja DepthAI, vgrajeno napravo, na kateri lahko neodvisno, učinkovito in z nizko porabo energije tečejo kompleksni algoritmi računalniškega vida. Zasnova vmesnika uporablja DepthAI za zaganjanje vnaprej treniranih konvolucijskih nevronskih mrež, ki zaznavajo obraze in roke. Nato so medsebojni položaji obrazov in rok interpretirani kot geste, uporabljene za navigacijo po drevesni strukturi vmesnika. Zasnova vmesnika je bila s pomočjo skupine prostovoljcev ovrednotena na podlagi prototipa informacijskega zaslona, ki je bil ustvarjen kot implementacija zasnove. Povratne informacije prostovoljcev so bile večinsko pozitivne, kar potrjuje izvedljivost in uporabnost predstavljene zasnove v praksi.

Keywords:DepthAI, vgrajeni računalniški vid, konvolucijske nevronske mreže, interakcija človek-računalnik, geste

Similar documents

Similar works from RUL:
  1. Generative adversarial model based augmentation of angiographic images for improved detection of intracranial aneurysms
  2. Shape detection and cut optimization of hot-rolled plates
  3. Virtual hair makeover using computer vision tools
  4. Development of a postprocessor for robotic wire arc additive manufacturing
  5. Development of a digital twin of a robotic welding cell
Similar works from other Slovenian collections:
  1. Frequency range optimization for continuous wave Terahertz imaging
  2. Klasifikacija možganskih lezij z umetno nevronsko mrežo
  3. Person age estimation based on digital images using convolutional neural networks

Back