Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Adaptive graph neural network training objective for link prediction
ID
POŠTUVAN, TIM
(
Author
),
ID
Šubelj, Lovro
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,23 MB)
MD5: BDC4BC52D7D87E84EC2F9DF8FE02AF3D
Image galllery
Abstract
One of the most important factors which contributes to success of a machine learning model is good training objective. Training objective crucially influences model’s performance and generalization capabilities. We focus on graph neural network training objective for link prediction, because it is barely explored in literature. In this case, training objective includes, among others, training mode, negative sampling strategy, and various hyperparameters, such as edge message ratio. Commonly, these hyperparameters are fine-tuned by complete search, which is very time consuming and model dependent. To mitigate these limitations, we propose Adaptive Grid Search (AdaGrid), which dynamically adjusts edge message ratio during training. It is model agnostic and highly scalable with fully customizable computational budget. AdaGrid can also boosts performance of the models up to 2.3%, while can be nine times more efficient than complete search.
Language:
English
Keywords:
machine learning
,
meta-learning
,
link prediction
,
graph neural networks
,
training objective
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
FMF - Faculty of Mathematics and Physics
Year:
2021
PID:
20.500.12556/RUL-128919
COBISS.SI-ID:
75109379
Publication date in RUL:
17.08.2021
Views:
1319
Downloads:
175
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
POŠTUVAN, TIM, 2021,
Adaptive graph neural network training objective for link prediction
[online]. Bachelor’s thesis. [Accessed 18 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=128919
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Prilagodljiv učni cilj grafovskih nevronskih mrež za napovedovanje povezav
Abstract:
Eden izmed najbolj pomembnih faktorjev, ki pripomore k uspehu modela strojnega učenja, je dober učni cilj. Učni cilj kritično vpliva na modelovo uspešnost in njegovo sposobnosti posploševanja. Mi se osredotočimo na učni cilj grafovskih nevronskih mrež za napovedovanje povezav, saj je le-ta še neraziskan v literaturi. V tem primeru učni cilj med drugim zajema tudi učni način, način vzorčenja negativnih povezav in številne druge hiperparametre, kot je razmerje povezav za širjenje sporočil. Pogosto so ti hiperparametri izbrani s pomočjo izčrpnega iskanja, kar je izredno časovno potratno, optimalni hiperparametri pa niso prenosljivi med različnimi modeli. Da bi odpravili te težave, predlagamo Adaptive Grid Search (AdaGrid), ki med učenjem dinamično spreminja razmerje povezav za širjenje sporočil. Je neodvisen od modela in visoko skalabilen, saj se lahko čas učenja prilagodi do potankosti. AdaGrid prav tako lahko izboljša modele kar do 2,3%, pri čemer je lahko kar devetkrat učinkovitejši od izčrpnega iskanja.
Keywords:
strojno učenje
,
meta-učenje
,
napovedovanje povezav
,
grafovske nevronske mreže
,
učni cilj
Similar documents
Similar works from RUL:
Segmentacija fibroze srca s pomočjo konvolucijskih avtokodirnikov
Konvolucijske nevronske mreže DAU z reduciranimi prostostnimi stopnjami
Izboljšava klasifikacije mamogramov z generiranjem umetnih podatkov in prenosom učenja
Abstrakcija oblik celičnih predelkov s pomočjo globokega učenja
Detekcija dronov na vgrajeni napravi v realnem času
Similar works from other Slovenian collections:
No similar works found
Back