Details

Nodal solutions for double phase Kirchhoff problems with vanishing potentials
ID Isernia, Teresa (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (488,43 KB)
MD5: B252726C2601F1212E8D300737B8D6FD

Abstract
We consider the following ▫$(p,q)$▫-Laplacian Kirchhoff type problem ▫$$-\left(a+b \int_{\mathbb{R}^3}|\nabla u|^p dx\right)\Delta_pu - \left(c+d \int_{\mathbb{R}^3}|\nabla u|^q dx\right) \Delta_qu$$▫ ▫$$+V(x)(|u|^{p-2}u+|u|^{q-2}u)= =K(x)f(u) \quad \text{in}\mathbb{R}^3,$$▫ where $a,b,c,d>0$ are constants, ▫$\frac{3}{2}<p<q<3$▫, ▫$V:\mathbb{R}^3 \to \mathbb{R}$▫ and ▫$K:\mathbb{R}^3 \to \mathbb{R}$▫ are positive continuous functions allowed for vanishing behavior at infinity, and ▫$f$▫ is a continuous function with quasicritical growth. Using a minimization argument and a quantitative deformation lemma we establish the existence of nodal solutions.

Language:English
Keywords:(p, q)-Kirchhoff, nodal solutions, vanishing potentials, Nehari manifold
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication version:Author Accepted Manuscript
Year:2021
Number of pages:Str. 371-396
Numbering:Vol. 124, Iss. 3-4
PID:20.500.12556/RUL-128912 This link opens in a new window
UDC:517.956
ISSN on article:0921-7134
DOI:10.3233/ASY-201648 This link opens in a new window
COBISS.SI-ID:33039619 This link opens in a new window
Publication date in RUL:16.08.2021
Views:805
Downloads:166
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Asymptotic analysis
Shortened title:Asymptot. anal.
Publisher:IOS Press
ISSN:0921-7134
COBISS.SI-ID:25030144 This link opens in a new window

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back