Processing math: 100%

Details

New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions
ID Hamdani, Mohamed Karim (Author), ID Chung, Nguyen Thanh (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (444,01 KB)
MD5: 00F84935745D9A528B86FA183ED50AD9
URLURL - Source URL, Visit https://www.degruyter.com/document/doi/10.1515/anona-2020-0172/html This link opens in a new window

Abstract
In this paper, we prove the existence of multiple solutions for the following sixth-order p(x)-Kirchhoff-type problem {M(Ω1p(x)|Δu|p(x)dx)Δ3p(x)u=λf(x)|u|q(x)2u+g(x)|u|r(x)2u+h(x)inΩ,u=Δu=Δ2u=0,onΩ,
where ΩRN is a smooth bounded domain, N>3, Δ3p(x)u:=div(Δ(|Δu|p(x)2Δu)) is the p(x)-triharmonic operator, p,q,rC(¯Ω),1<p(x)<N3 for all x¯Ω,M(s)=absγ,a,b,γ>0,λ>0, g:Ω×RR is a nonnegative continuous function while f,h:Ω×RR are sign-changing continuous functions in Ω. To the best of our knowledge, this paper is one of the first contributions to the study of the sixth-order p(x)-Kirchhoff type problems with sign changing Kirchhoff functions.

Language:English
Keywords:variable exponents, Kirchhoff type problems, p(x)-triharmonic operator, sign-changing functions, concave-convex terms, Ekeland's variational principle, multiple solutions
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2021
Number of pages:Str. 1117-1131
Numbering:Vol. 10, iss. 1
PID:20.500.12556/RUL-128541 This link opens in a new window
UDC:517.956
ISSN on article:2191-9496
DOI:10.1515/anona-2020-0172 This link opens in a new window
COBISS.SI-ID:58245891 This link opens in a new window
Publication date in RUL:19.07.2021
Views:2204
Downloads:256
Metadata:XML DC-XML DC-RDF
:
HAMDANI, Mohamed Karim, CHUNG, Nguyen Thanh and REPOVŠ, Dušan, 2021, New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions. Advances in nonlinear analysis [online]. 2021. Vol. 10, no. 1, p. 1117–1131. [Accessed 13 June 2025]. DOI 10.1515/anona-2020-0172. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=128541
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Advances in nonlinear analysis
Publisher:De Gruyter
ISSN:2191-9496
COBISS.SI-ID:16253785 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:Other - Other funder or multiple funders
Funding programme:Tunisia, Military Research Center for Science and Technology Laboratory
Project number:LR19DN01

Funder:Other - Other funder or multiple funders
Funding programme:Vietnam, National Foundation for Science and Technology Development (NAFOSTED)
Project number:N.101.02.2017.04

Funder:ARRS - Slovenian Research Agency
Project number:P1-0292
Name:Topologija, geometrija in nelinearna analiza

Funder:ARRS - Slovenian Research Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Funder:ARRS - Slovenian Research Agency
Project number:N1-0064
Name:Analiza zveznih in diskretnih matematičnih modelov v biologiji, kemiji in genetiki

Funder:ARRS - Slovenian Research Agency
Project number:J1-8131
Name:Zvezni in diskretni sistemi v nelinearni analizi

Similar documents

Similar works from RUL:
  1. Vrednotenje uporabniške izkušnje v industrijski simulaciji v navidezni resničnosti
  2. Vrednotenje uporabniške izkušnje v aplikacijah navidezne resničnosti
  3. Vpliv vsebine na uporabniško izkušnjo v VR okolju
  4. Večuporabniške spletne aplikacije v navidezni resničnosti
  5. Simulacija čiščenja proizvodne linije v navidezni resničnosti
Similar works from other Slovenian collections:
  1. Delo z nadarjenimi učenci na področju likovne umetnosti
  2. Delo z učno uspešnimi in učno manj uspešnimi nadarjenimi učenci
  3. Delo z nadarjenimi učenci v osnovni šoli
  4. Nadarjeni učenci pri predmetu matematike
  5. Matematično nadarjeni učenci v osnovni šoli

Back