Details

New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions
ID Hamdani, Mohamed Karim (Author), ID Chung, Nguyen Thanh (Author), ID Repovš, Dušan (Author)

.pdfPDF - Presentation file, Download (444,01 KB)
MD5: 00F84935745D9A528B86FA183ED50AD9
URLURL - Source URL, Visit https://www.degruyter.com/document/doi/10.1515/anona-2020-0172/html This link opens in a new window

Abstract
In this paper, we prove the existence of multiple solutions for the following sixth-order p(x)-Kirchhoff-type problem {M(Ω1p(x)|Δu|p(x)dx)Δ3p(x)u=λf(x)|u|q(x)2u+g(x)|u|r(x)2u+h(x)inΩ,u=Δu=Δ2u=0,onΩ,
where ΩRN is a smooth bounded domain, N>3, Δ3p(x)u:=div(Δ(|Δu|p(x)2Δu)) is the p(x)-triharmonic operator, p,q,rC(¯Ω),1<p(x)<N3 for all x¯Ω,M(s)=absγ,a,b,γ>0,λ>0, g:Ω×RR is a nonnegative continuous function while f,h:Ω×RR are sign-changing continuous functions in Ω. To the best of our knowledge, this paper is one of the first contributions to the study of the sixth-order p(x)-Kirchhoff type problems with sign changing Kirchhoff functions.

Language:English
Keywords:variable exponents, Kirchhoff type problems, p(x)-triharmonic operator, sign-changing functions, concave-convex terms, Ekeland's variational principle, multiple solutions
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Year:2021
Number of pages:Str. 1117-1131
Numbering:Vol. 10, iss. 1
PID:20.500.12556/RUL-128541 This link opens in a new window
UDC:517.956
ISSN on article:2191-9496
DOI:10.1515/anona-2020-0172 This link opens in a new window
COBISS.SI-ID:58245891 This link opens in a new window
Publication date in RUL:19.07.2021
Views:2202
Downloads:256
Metadata:XML DC-XML DC-RDF
:
HAMDANI, Mohamed Karim, CHUNG, Nguyen Thanh and REPOVŠ, Dušan, 2021, New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions. Advances in nonlinear analysis [online]. 2021. Vol. 10, no. 1, p. 1117–1131. [Accessed 13 June 2025]. DOI 10.1515/anona-2020-0172. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=128541
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Advances in nonlinear analysis
Publisher:De Gruyter
ISSN:2191-9496
COBISS.SI-ID:16253785 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Projects

Funder:Other - Other funder or multiple funders
Funding programme:Tunisia, Military Research Center for Science and Technology Laboratory
Project number:LR19DN01

Funder:Other - Other funder or multiple funders
Funding programme:Vietnam, National Foundation for Science and Technology Development (NAFOSTED)
Project number:N.101.02.2017.04

Funder:ARRS - Slovenian Research Agency
Project number:P1-0292
Name:Topologija, geometrija in nelinearna analiza

Funder:ARRS - Slovenian Research Agency
Project number:N1-0114
Name:Algebrajski odtisi geometrijskih značilnosti v homologiji

Funder:ARRS - Slovenian Research Agency
Project number:N1-0083
Name:Forsing, fuzija in kombinatorika odprtih pokritij

Funder:ARRS - Slovenian Research Agency
Project number:N1-0064
Name:Analiza zveznih in diskretnih matematičnih modelov v biologiji, kemiji in genetiki

Funder:ARRS - Slovenian Research Agency
Project number:J1-8131
Name:Zvezni in diskretni sistemi v nelinearni analizi

Similar documents

Similar works from RUL:
  1. On the fourth-order Leray-Lions problem with indefinite weight and nonstandard growth conditions
  2. Stationary waves of Schrödinger-type equations with variable exponent
  3. A double phase problem with a nonlinear boundary condition
  4. Multiple solutions of double phase variational problems with variable exponent
  5. Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators
Similar works from other Slovenian collections:
  1. Kamont, Z.; Czlapinski, T.: Existence of weak solutions for first order partial functional differential equations. (English). - [J] Atti Semin. Mat. Fis. Univ. Modena 48, No.2, 275-297 (2000). [ISSN 0041-8986]

Back