Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Lastnosti Laplaceovih matrik enostavnih in mešanih grafov : magistrsko delo
ID
Marolt, Saša
(
Author
),
ID
Oblak, Polona
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(772,92 KB)
MD5: B2089C885850996C13305D632B584A78
Image galllery
Abstract
V magistrski nalogi obravnavamo spektralno teorijo enostavnih in mešanih grafov. Za Laplaceove matrike enostavnih grafov pokažemo, da je večkratnost lastne vrednosti nič enaka številu povezanih komponent grafa in preučimo celoštevilske lastne vrednosti Laplaceovih matrik dreves. Za mešane grafe pokažemo, da imajo Laplaceove matrike kvazidvodelnih grafov enak spekter kot Laplaceove matrike pripadajočih temeljnih enostavnih grafov. Predstavimo klasifikacijo vseh nesingularnih povezanih mešanih grafov na vsaj sedmih vozliščih, katerih Laplaceova matrika ima natanko dve lastni vrednosti večji od dve.
Language:
Slovenian
Keywords:
Laplaceova matrika
,
enostavni grafi
,
mešani grafi
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2021
PID:
20.500.12556/RUL-128155
UDC:
519.1
COBISS.SI-ID:
69014019
Publication date in RUL:
04.07.2021
Views:
935
Downloads:
65
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Properties of Laplacian matrices of simple and mixed graphs
Abstract:
In this work we discuss the spectral theory of simple and mixed graphs. For the Laplacian matrix of a simple graph we show that the multiplicity of the eigenvalue zero equals the number of connected components of the graph and we examine integer eigenvalues of the Laplacian matrix of a tree. For a mixed graph we show that the Laplacian matrix of a quasi-bipartite graph has the same spectrum as the Laplacian matrix of the corresponding underlying simple graph. We present the classification of all nonsingular connected mixed graphs on at least seven vertices whose Laplacian matrices have exactly two eigenvalues greater than two.
Keywords:
Laplacian matrix
,
simple graphs
,
mixed graphs
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back