izpis_h1_title_alt

Segmentacija videoposnetkov vodnih scen s pomočjo delno nadzorovanega učenja
ID Česnik, Blaž (Author), ID Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (17,31 MB)
MD5: BF230EF9274754D88B45B16EC65E2EAC

Abstract
Zaznavanje ovir je ključnega pomena za avtonomna plovila, saj lahko ob nepravilni detekciji pride do trka plovila ali nepotrebnega izogibanja objektov, ki ne obstajajo. Temu se lahko izognemo z uporabo natančnejših modelov za detekcijo takšnih ovir. Ker so avtonomna plovila dokaj neraziskano področje v primerjavi z avtonomnimi vozili, je posledično na voljo tudi manj anotiranih semantično segmentacijskih zbirk vodne domene, s katerimi bi lahko učili mrežo. Ker je ročna anotacija za generiranje takšnih zbirk draga in vzame veliko časa, je uporaba slik brez anotacij uporabna alternativa. V magistrskem delu se posvetimo evalvaciji metod, namenjenim nenadzorovani domenski adaptaciji, ki za učenje uporabljajo anotirane slike iz izvorne zbirke, ter slike brez anotacij iz ciljne zbirke. V ta namen preizkusimo adaptacijske metode notranje domenske adaptacije, adaptacijo z manipulacijo spektra, metodo s prileganjem instanc ter dvosmerno učenje. Analizo izvajamo na referenčni mreži WaSR [5], ki je trenutno najuspešnejša področju segmentacije na vodni domeni, analiziramo pa tudi adaptacijo na reducirani verziji mreže WaSR, pri kateri ne upoštevamo dodatnih regularizacij uporabljenih v popolni referenčni mreži. Analiza je pokazala, da ob adaptaciji reducirane mreže WaSR, dosega najboljše rezultate metoda adaptacije z manipulacijo spektra, ki za približno 6% izboljša F-mero popolne referenčne mreže, pri adaptaciji popolne mreže je metoda za približno 7% slabša, z uporabo referenčne mreže WaSR s sklopljeno izgubno funkcijo ločevanja vode pa za približno 3% boljša kot popolna mreža WaSR.

Language:Slovenian
Keywords:računalniški vid, delno nadzorovano učenje, video segmentacija, nenadzorovana domenska adaptacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-127974 This link opens in a new window
COBISS.SI-ID:69224707 This link opens in a new window
Publication date in RUL:30.06.2021
Views:1263
Downloads:175
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Video segmentation of water scenes using semi-supervised learning
Abstract:
Obstacle detection is a crucial component in unmanned surface vehicles for collision prevention and unnecessary stopping at false detections. Autonomous vessels are a rather unexplored area compared to autonomous ground vehicles, thus there are much fewer annotated datasets for training modern obstacle detectors. Since manual acquisition of ground truth segmentation data is time consuming and expensive, a viable alternative is training with low supervision. In the master's thesis, we focus on evaluation of unsupervised domain adaptation methods, which use an annotated source dataset and a target dataset without annotation. We test four modern adaptation methods: Intra doman adaptation, Fourier domain adaptation, Instance matching and Bidirectional learning. We perform analysis on complete WaSR [5] method, which is currently state-of-the-art in the field of semantic segmentation on water domain, and on a reduced WaSR method version, without additional regularizations. Our analysis shows, that on reduced WaSR, Fourier domain adaptation gets the best F-measure, which outperforms original WaSR trained without adaptation by over 6%. We then test the same adaptation method on original WaSR and discover, that the Fourier method underperforms the complete reference network for approximately 7% F-measure, and outperforms for approximately 3% if we use WaSR method with only IMU.

Keywords:computer vision, semi supervised learning, video segmentation, unsupervised domain adaptation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back