Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Napovedovanje rasti utrujenostne razpoke z metodo končnih elementov
ID
Istenič, Andraž
(
Author
),
ID
Klemenc, Jernej
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(10,89 MB)
MD5: 0D5E11E3C100970B21CC3ACE539E905D
Image galllery
Abstract
V magistrskem delu smo predstavili uporabo komercialnega programa Abaqus 6.12 za napoved rasti razpok pri dinamično obremenjenih 3D-problemih. Pri simulacijah smo uporabili razširjene končne elemente (XFEM) v kombinaciji s Parisovim zakonom. Simulacije smo izvedli na C-preskušancu in preluknjanem preskušancu. V obeh primerih smo dosegli rast razpoke tako pri statičnem kot dinamičnem obremenjevanju. Pri preluknjanem preskušancu smo dobljene rezultate primerjali z eksperimentalnimi krivuljami zdržljivosti. Ugotovili smo, da je metoda sicer obetavna, vendar je že pri zmerno zapletenih primerih težko doseči konvergenco pri simulacijah rasti utrujenostnih razpok.
Language:
Slovenian
Keywords:
rast razpok
,
utrujanje
,
razširjeni končni elementi
,
Parisov zakon
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FS - Faculty of Mechanical Engineering
Place of publishing:
Ljubljana
Publisher:
[A. Istenič]
Year:
2021
Number of pages:
XXVI, 64 str.
PID:
20.500.12556/RUL-127961
UDC:
620.178.3:519.61:004.94(043.2)
COBISS.SI-ID:
71319811
Publication date in RUL:
30.06.2021
Views:
1965
Downloads:
173
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Predicting a fatigue-crack growth using finite-element method
Abstract:
In the master's thesis a use of commercially available software Abaqus 6.12 for predicting a fatigue-crack growth in 3D solid problems is presented. For simulations an extended finite element method (XFEM) was used in combination with Paris law. An analysis of a compact tension (CT) and a notched dog-bone shaped specimen was performed. In both cases a static and dynamic crack growth was studied. Results of a notched dog-bone shaped specimen were compared to the experimental S-N curves. It was found out that method is promising but it is difficult to achieve convergence even for those moderately complex 3D specimens.
Keywords:
crack growth
,
fatigue life
,
extended finite-element method
,
Paris law
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back