Details

Prepoznava zračnih žepov v kompozitnih strukturah na osnovi obdelave slik s konvolucijskimi nevronskimi mrežami
ID Možina, Nejc (Author), ID Bračun, Drago (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,98 MB)
MD5: 655AD641B9EFF438BE1D7B493716E9FE

Abstract
Pri izdelavi kompozitnih izdelkov nastanejo zračni žepi, ki poslabšajo določene mehanske lastnosti kompozita. V nalogi je prikazan razvoj slikovnega sistema za pregledovanje kompozitnih izdelkov, ki vključuje osvetljevanje s strukturirano svetlobo, zajem slike osvetljene površine ter skeniranje izdelka. V nadaljevanju je zajet teoretični in eksperimentalni prikaz prepoznave zračnih žepov z uporabo konvolucijskih nevronskih mrež. Globoko učenje smo izvedli s pomočjo sistema YOLO, ki je namenjen prepoznavi objektov na slikah. Vsi pomožni programi za predobdelavo slik in ustvarjanje baze podatkov so bili razviti v programskem okolju Python. Končne uteži globokega učenja in delovanje zaznave zračnih žepov smo nato uspešno testirali na testnih slikah in ovrednotili dobljene rezultate.

Language:Slovenian
Keywords:kompozitne strukture, zračni žepi, zaznava napak, strojni vid, globoko učenje, konvolucijske nevronske mreže
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FS - Faculty of Mechanical Engineering
Place of publishing:Ljubljana
Publisher:[N. Možina ]
Year:2021
Number of pages:XXI, 60 str.
PID:20.500.12556/RUL-127235 This link opens in a new window
UDC:620.168:004.932:004.85(043.2)
COBISS.SI-ID:70023683 This link opens in a new window
Publication date in RUL:27.05.2021
Views:1450
Downloads:262
Metadata:XML DC-XML DC-RDF
:
MOŽINA, Nejc, 2021, Prepoznava zračnih žepov v kompozitnih strukturah na osnovi obdelave slik s konvolucijskimi nevronskimi mrežami [online]. Master’s thesis. Ljubljana : N. Možina . [Accessed 31 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=127235
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detection of air voids in composite structures based on image processing with convolutional neural networks
Abstract:
During the manufacture of composite products, air voids are formed which affect certain mechanical properties of the composite. This paper presents the development of an imaging system for viewing composite products, which includes structured light illumination, image acquisition of the illuminated surface, and scanning of the composite product. This is followed by a theoretical and experimental demonstration of air voids detection using convolutional neural networks. Deep learning was performed using the YOLO system, which is designed to recognize objects on images. All programs for image preprocessing and database generation were developed in the Python software environment. The final weights of the Deep Learning and the functioning of the air voids detection were then successfully tested on test images after the obtained results were evaluated.

Keywords:composite structures, air pockets, detecting defects machine vision, deep learning, convolutional neural networks

Similar documents

Similar works from RUL:
  1. Thermodynamically consistent reduced dimensionality electrochemical model for proton exchange membrane fuel cell performance modelling and control
  2. Real-time capable transient model of liquid water dynamics in proton exchange membrane fuel cells
  3. An innovative hybrid 3D analytic-numerical approach for system level modelling of PEM fuel cells
  4. Identifiability analysis of degradation model parameters from transient CO2 release in low-temperature PEM fuel cell under various AST protocols
  5. Synthesizing electrically equivalent circuits for use in electrochemical impedance spectroscopy through grammatical evolution
Similar works from other Slovenian collections:
  1. Combination welding process optimisation for heavy wall pipe welding
  2. Določitev varilne tehnologije za reaktor s hladilno polcevno kačo
  3. Arc stud welding on low alloy construction steel

Back