izpis_h1_title_alt

l-distance-balanced graphs
ID Miklavič, Štefko (Author), ID Šparl, Primož (Author)

URLURL - Presentation file, Visit https://doi.org/10.1016/j.dam.2018.03.011 This link opens in a new window

Abstract
Graf ▫$\Gamma$▫ je razdaljno uravnotežen, če v njem za poljuben par sosednjih vozlišč ▫$u$▫ in ▫$v$▫ velja, da je število vozlišč grafa ▫$\Gamma$▫, ki so bližje ▫$u$▫ kot ▫$v$▫, enako številu vozlišč grafa ▫$\Gamma$▫, ki so bližje ▫$v$▫ kot ▫$u$▫. Ti grafi so sicer zanimivi že sami po sebi, v okviru teorije grafov, pomembni pa so tudi zaradi možnosti uporabe na drugih področjih, kot sta na primer matematična kemija in teorija komunikacijskih omrežij. V članku se posvetimo naravni posplošitvi koncepta razdaljne uravnoteženosti, ki jo le leta 2014 vpeljal Boštjan Frelih. Pravimo, da je graf ▫$\Gamma$▫ ▫$\ell$▫-razdaljno uravnotežen, če za poljuben par vozlišč ▫$u$▫ in ▫$v$▫ na razdalji ▫$\ell$▫ v grafu ▫$\Gamma$▫ velja, da je število vozlišč grafa ▫$\Gamma$▫, ki so bližje ▫$u$▫ kot ▫$v$▫, enako številu vozlišč grafa ▫$\Gamma$▫, ki so bližje ▫$v$▫ kot ▫$u$▫. V članku pokažemo nekaj splošnih lastnosti takšnih grafov in konstruiramo vrsto različnih primerov. Posebej se posvetimo grafom premera največ 3 in študiramo lastnost ▫$\ell$▫-razdaljne uravnoteženosti v kubičnih grafih. Med drugim se posvetimo tej lastnosti v dobro znanih posplošenih Petersenovih grafih.

Language:English
Keywords:distance-balanced, l-distance-balanced, highly distance-balanced
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
Year:2018
Number of pages:Str. 143-154
Numbering:Vol. 244
PID:20.500.12556/RUL-125780 This link opens in a new window
UDC:519.17
ISSN on article:0166-218X
DOI:10.1016/j.dam.2018.03.011 This link opens in a new window
COBISS.SI-ID:1540239812 This link opens in a new window
Publication date in RUL:07.04.2021
Views:707
Downloads:102
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Discrete applied mathematics
Shortened title:Discrete appl. math.
Publisher:Elsevier
ISSN:0166-218X
COBISS.SI-ID:25342464 This link opens in a new window

Secondary language

Language:English
Title:l-razdaljno uravnoteženi grafi
Abstract:
A graph ▫$\varGamma$▫ is distance-balanced if for each pair ▫$u$▫, ▫$v$▫ of adjacent vertices of ▫$\varGamma$▫ the number of vertices closer to ▫$u$▫ than to ▫$v$▫ is equal to the number of vertices closer to ▫$v$▫ than to ▫$u$▫. Apart from the interest in these graphs from the graph theoretical point of view they have applications in other areas of research, for instance in mathematical chemistry and communication networks, and have thus been studied from various different points of view in the literature. In this paper we study a very natural generalization of the concept of distance-balancedness, introduced by B. Frelih. Let ▫$\ell$▫ denote a positive integer. A connected graph ▫$\varGamma$▫ of diameter at least ▫$\ell$▫ is said to be ▫$\ell$▫ distance-balanced whenever for any pair of vertices ▫$u$▫, ▫$v$▫ of ▫$\varGamma$▫ at distance ▫$\ell$▫, the number of vertices closer to ▫$u$▫ than to ▫$v$▫ is equal to the number of vertices closer to ▫$v$▫ than to ▫$u$▫. We obtain some general results on ▫$\ell$▫-distance-balanced graphs and provide various examples. We study those of diameter at most 3 in more detail and investigate the ▫$\ell$▫-distance-balancedness property of cubic graphs. In particular, we analyze this property for the generalized Petersen graphs.


Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back