izpis_h1_title_alt

Tetravalent vertex- and edge-transitive graphs over doubled cycles
ID Kuzman, Boštjan (Author), ID Malnič, Aleksander (Author), ID Potočnik, Primož (Author)

URLURL - Presentation file, Visit https://doi.org/10.1016/j.jctb.2018.01.007 This link opens in a new window

Abstract
V članku s pomočjo metode dviga avtomorfizmov v kontekstu elementarno-abelskih krovnih projekcij dopolnimo in posplošimo rezultate o štirivalentnih simetričnih grafih, ki sta jih obravnavala A. Gardiner in C. E. Praeger [Eur. J. Comb. 15, No. 4, 375--381 (1994)]. Vozliščno- in povezavno-tranzitivne grafe, katerih kvocient vzdolž normalne ▫$p$▫-elementarno abelske grupe avtomorfizmov za liho praštevilo ▫$p$▫ je cikel, so opisani s pomočjo cikličnih in negacikličnih kod. Natančneje, simetrijske lastnosti takšnih grafov so izpeljane iz določenih lastnosti polinomskih generatorjev cikličnih in negacikličnih kod, to je, iz deliteljev ▫$x^n\pm 1\in \mathbb{Z}_p [x]$▫. Ugotovitve uporabimo za kratek in poenoten opis tako razrešenih kot nerazrešenih primerov, ki sta jih obravnavala Gardiner in Praeger.

Language:English
Keywords:tetravalent graphs, symmetric graphs, regular covers, cyclic codes, reflexible polynomials
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:PEF - Faculty of Education
Year:2018
Number of pages:Str. 109-137
Numbering:Vol. 131
PID:20.500.12556/RUL-125779 This link opens in a new window
UDC:519.17
ISSN on article:0095-8956
DOI:10.1016/j.jctb.2018.01.007 This link opens in a new window
COBISS.SI-ID:1540135620 This link opens in a new window
Publication date in RUL:07.04.2021
Views:1305
Downloads:106
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Journal of combinatorial theory
Shortened title:J. comb. theory, Ser. B
Publisher:Elsevier
ISSN:0095-8956
COBISS.SI-ID:25721600 This link opens in a new window

Secondary language

Language:English
Title:Tetravalentni vozliščno- in povezavno- tranzitivni grafi nad podvojenimi cikli
Abstract:
In order to complete (and generalize) results of A. Gardiner and C. E. Praeger [Eur. J. Comb. 15, No. 4, 375--381 (1994)] on 4-valent symmetric graphs we apply the method of lifting automorphisms in the context of elementary-abelian covering projections. In particular, the vertex- and edge-transitive graphs whose quotient by a normal ▫$p$▫-elementary abelian group of automorphisms, for ▫$p$▫ an odd prime, is a cycle, are described in terms of cyclic and negacyclic codes. Specifically, the symmetry properties of such graphs are derived from certain properties of the generating polynomials of cyclic and negacyclic codes, that is, from divisors of ▫$x^n \pm 1 \in \mathbb{Z}_p [x]$▫. As an application, a short and unified description of resolved and unresolved cases of Gardiner and Praeger are given.


Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back