izpis_h1_title_alt

Approximate multiple kernel learning with least-angle regression
ID Stražar, Martin (Author), ID Curk, Tomaž (Author)

.pdfPDF - Presentation file, Download (1,77 MB)
MD5: AB5D1179451FAEB7E5E0E1BE7750DC4A
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S0925231219302449 This link opens in a new window

Abstract
Kernel methods provide a principled way for general data representations. Multiple kernel learning and kernel approximation are often treated as separate tasks, with considerable savings in time and memory expected if the two are performed simultaneously. Our proposed Mklaren algorithm selectively approximates multiple kernel matrices in regression. It uses Incomplete Cholesky Decomposition and Least-angle regression (LAR) to select basis functions, achieving linear complexity both in the number of data points and kernels. Since it approximates kernel matrices rather than functions, it allows to combine an arbitrary set of kernels. Compared to single kernel-based approximations, it selectively approximates different kernels in different regions of the input spaces. The LAR criterion provides a robust selection of inducing points in noisy settings, and an accurate modelling of regression functions in continuous and discrete input spaces. Among general kernel matrix decompositions, Mklaren achieves minimal approximation rank required for performance comparable to using the exact kernel matrix, at a cost lower than 1% of required operations. Finally, we demonstrate the scalability and interpretability in settings with millions of data points and thousands of kernels.

Language:English
Keywords:kernel methods, kernel approximation, multiple kernel learning, least-angle regression
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FRI - Faculty of Computer and Information Science
Publication status:Published
Publication version:Version of Record
Year:2019
Number of pages:Str. 245-258
Numbering:Vol. 340
PID:20.500.12556/RUL-125566 This link opens in a new window
UDC:004
ISSN on article:0925-2312
DOI:10.1016/j.neucom.2019.02.030 This link opens in a new window
COBISS.SI-ID:1538162883 This link opens in a new window
Publication date in RUL:25.03.2021
Views:1129
Downloads:315
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Neurocomputing
Shortened title:Neurocomputing
Publisher:Elsevier
ISSN:0925-2312
COBISS.SI-ID:172315 This link opens in a new window

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:25.03.2021

Secondary language

Language:Slovenian
Keywords:jedrne metode, aproksimacija jeder, učenje z več jedrnimi funkcijami, regresija najmanjših kotov

Projects

Funder:ARRS - Slovenian Research Agency
Project number:P2-0209
Name:Umetna inteligenca in inteligentni sistemi

Funder:ARRS - Slovenian Research Agency
Project number:J7-5460
Name:Post-transkripcijske regulacijske mreže v nevrodegenerativnih boleznih.

Funder:ARRS - Slovenian Research Agency
Project number:J1-8150
Name:"DNA sampling II": metoda za prepoznavo na DNA neposredno ali posredno vezanih proteinov v bakteriji

Funder:ARRS - Slovenian Research Agency
Project number:J3-9263
Name:Vloga paraspeklom podobnih jedrnih telesc pri patogenezi nevrodegenerativnih bolezni ALS in FTD

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back