Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Approximate multiple kernel learning with least-angle regression
ID
Stražar, Martin
(
Author
),
ID
Curk, Tomaž
(
Author
)
PDF - Presentation file,
Download
(1,77 MB)
MD5: AB5D1179451FAEB7E5E0E1BE7750DC4A
URL - Source URL, Visit
https://www.sciencedirect.com/science/article/pii/S0925231219302449
Image galllery
Abstract
Kernel methods provide a principled way for general data representations. Multiple kernel learning and kernel approximation are often treated as separate tasks, with considerable savings in time and memory expected if the two are performed simultaneously. Our proposed Mklaren algorithm selectively approximates multiple kernel matrices in regression. It uses Incomplete Cholesky Decomposition and Least-angle regression (LAR) to select basis functions, achieving linear complexity both in the number of data points and kernels. Since it approximates kernel matrices rather than functions, it allows to combine an arbitrary set of kernels. Compared to single kernel-based approximations, it selectively approximates different kernels in different regions of the input spaces. The LAR criterion provides a robust selection of inducing points in noisy settings, and an accurate modelling of regression functions in continuous and discrete input spaces. Among general kernel matrix decompositions, Mklaren achieves minimal approximation rank required for performance comparable to using the exact kernel matrix, at a cost lower than 1% of required operations. Finally, we demonstrate the scalability and interpretability in settings with millions of data points and thousands of kernels.
Language:
English
Keywords:
kernel methods
,
kernel approximation
,
multiple kernel learning
,
least-angle regression
Work type:
Article
Typology:
1.01 - Original Scientific Article
Organization:
FRI - Faculty of Computer and Information Science
Publication status:
Published
Publication version:
Version of Record
Year:
2019
Number of pages:
Str. 245-258
Numbering:
Vol. 340
PID:
20.500.12556/RUL-125566
UDC:
004
ISSN on article:
0925-2312
DOI:
10.1016/j.neucom.2019.02.030
COBISS.SI-ID:
1538162883
Publication date in RUL:
25.03.2021
Views:
1129
Downloads:
315
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Record is a part of a journal
Title:
Neurocomputing
Shortened title:
Neurocomputing
Publisher:
Elsevier
ISSN:
0925-2312
COBISS.SI-ID:
172315
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:
25.03.2021
Secondary language
Language:
Slovenian
Keywords:
jedrne metode
,
aproksimacija jeder
,
učenje z več jedrnimi funkcijami
,
regresija najmanjših kotov
Projects
Funder:
ARRS - Slovenian Research Agency
Project number:
P2-0209
Name:
Umetna inteligenca in inteligentni sistemi
Funder:
ARRS - Slovenian Research Agency
Project number:
J7-5460
Name:
Post-transkripcijske regulacijske mreže v nevrodegenerativnih boleznih.
Funder:
ARRS - Slovenian Research Agency
Project number:
J1-8150
Name:
"DNA sampling II": metoda za prepoznavo na DNA neposredno ali posredno vezanih proteinov v bakteriji
Funder:
ARRS - Slovenian Research Agency
Project number:
J3-9263
Name:
Vloga paraspeklom podobnih jedrnih telesc pri patogenezi nevrodegenerativnih bolezni ALS in FTD
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back