izpis_h1_title_alt

Bayesovska optimizacija hiperparametrov v strojnem učenju
ID Ocepek, David (Author), ID Kukar, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,66 MB)
MD5: CB21BA3DEC9A0CD98492259662F7C5CF

Abstract
Cilj naše diplomske naloge je bil analizirati Bayesovsko optimizacijo na problemu optimizacije hiperparametrov. Podlaga za analizo sta pogosto uporabljani orodji za optimizacijo hiperparametrov: naključno iskanje in iskanje v mreži. Predstavimo Bayesovsko optimizacijo, s poudarkom na Gaussovih procesih in odločilnih funkcijah: EI, PI in LCB. Izvedemo deset eksperimentov, pri katerih optimiziramo hiperparametre petih različnih modelov. Pri eksperimentih analiziramo dve zelo pomembni metriki: hitrost optimizacije in rezultate, ki jih doseže optimizirani model. Modeli optimizirani z Bayesovsko optimizacijo so v povprečju v primerljivem času dosegli boljše rezultate kot tisti, ki so bili optimizirani z naključnim iskanjem in iskanjem v mreži.

Language:Slovenian
Keywords:Bayesovska optimizacija, nastavljanje hiperparametrov, avtomatizirano strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-125319 This link opens in a new window
COBISS.SI-ID:54707971 This link opens in a new window
Publication date in RUL:10.03.2021
Views:1268
Downloads:128
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Bayesian Optimization of Hyperparameters in Machine Learning
Abstract:
The goal of our thesis was to analyze Bayesian optimization on the problem of hyperparameter optimization. The basis for the analysis is the commonly used tools for hyperparameter optimization: random search and grid search. We introduce Bayesian optimization with an emphasis on Gaussian processes and acquisition functions: EI, PI, LCB. We perform ten experiments in which we optimize the hyperparameters of five different models. In experiments, we analyze two really important metrics: speed of optimization and results that the optimized model achieved. Models optimized with Bayesian optimization in comparable time achieved better results on average than those that were optimized with random search and grid search.

Keywords:Bayesian optimization, hyperparameter tuning, automated machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back