izpis_h1_title_alt

Napovedna moč klasifikacije gostotnih skupin po BI-RADS kriteriju na procesiranih in neprocesiranih mamografskih slikah
ID Premoša, Luka (Author), ID Studen, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,98 MB)
MD5: C7C4A8637B9CE8F6D2523DFEF4738335

Abstract
$\textbf{Cilj:}$ Radiološka gostota je dober neodvisni napovedni dejavnik ogroženosti z rakom dojk. Zaradi zamudnosti določanje gostote ni del standardnega mamografskega pregleda. Cilj magistrske naloge je bilo preveriti uspešnost računalniških algoritmov določanja radiološke gostote s kvantitativno analizo mamografskih slik. Naša začetna hipoteza je bila, da je zaradi ohranjene informacije o atenuaciji rentgenskih žarkov napovedna moč neprocesiranih slik boljša od napovedne moči procesiranih mamografskih slik. $\textbf{Podatki in metode:}$ Uporabljenih je bilo 9252 parov procesiranih in neprocesiranih slik, ki so bile zajete na rentgenskih aparatih proizvajalca Siemens. Uporabljenih je bilo tudi 4787 procesiranih slik, ki so bile zajete na aparatih proizvajalca Hologic. Gre za aktualne podatke iz podatkovne baze DORA. Za segmentacijo in generacijo značilk je bil uporabljen program LIBRA. Selekcija značilk je bila izvedena z uporabo statističnih metod eno-faktorska ANOVA in mRMR. Za klasifikator je bila izbrana multinomska logistična regresija. Napovedna moč je bila ocenjena z izračunom koeficienta $\kappa$. Dobljene rezultate smo primerjali z rezultati iz literature. $\textbf{Rezultati:}$ V primeru klasifikacije vseh štirih gostotnih skupin je bila vrednost koeficienta $\kappa$ pri validaciji na procesiranih slikah 0.65 (95\% CI, 0.58-0.71) in neprocesiranih slikah 0.61 (95\% CI, 0.58-071). V primeru binarnih klasifikacij pa je bila je bila vrednost $\kappa$ na procesiranih slikah 0.56 (95\% CI, 0.52-0.60) in neprocesiranih slikah 0.55 (95\% CI, 0.51-0.60). $\textbf{Zaključek:}$ Med napovedno močjo procesiranih in neprocesiranih slik bistvenih razlik nismo ugotovili. Naša modela dosežeta primerljivo vrednost $\kappa$ kot v literaturi, kjer je bila izvedena analiza ujemanja ocen radiologov. Napake pri klasifikaciji smo povezali s prisotnostjo gostih lezij ter napakami pri segmentaciji tkiva dojke in prsne mišice.

Language:Slovenian
Keywords:Mamografija, gostota dojk, BI-RADS kriterij, multinomska logistična regresija, ANOVA, mRMR
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2021
PID:20.500.12556/RUL-125152 This link opens in a new window
COBISS.SI-ID:54000387 This link opens in a new window
Publication date in RUL:05.03.2021
Views:2751
Downloads:157
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Difference in predictive power of BI-RADS density classification between raw and processed mammograms
Abstract:
$\textbf{Purpose:}$ Breast density is an important independent breast cancer risk factor. Breast density reading is not a part of the standard screening examination due to time considerations. Purpose of the thesis was to assess predictive power of computer algorithms for breast density reading using quantitative analysis of mammographic images. Our initial hypothesis was that raw images have higher predictive power than processed images due to preserved information of x-ray attenuation in breast tissue. $\textbf{Data and methods:}$ We used 9252 pairs of raw and processed mamogramms recorded by Siemens scanners and 4787 processed images recorder by Hologic scanners. Images were part of the DORA data base. Breast segmentation and feature generation were performed using LIBRA software. We used statistical methods one-way ANOVA and mRMR for feature selection. Classifier was based on multinomial logistic regression. Predictive power was assessed by calculating coefficient $\kappa$. Our results were also compared to results from literature. $\textbf{Results:}$ When classification to four density classes was performed, our algorithm on processed images scored a $\kappa = 0.65$ (95\% CI, 0.58-071) and our algorithm on raw images a $\kappa = 0.61$ (95\% CI, 0.58-071). When classification to dense/non-dense breasts was performed, our algorithm on processed images scored a $\kappa = 0.56$ (95\% CI, 0.52-0.60) and on raw images a $\kappa = 0.55$ (95\% CI, 0.51-0.60). $\textbf{Conclusion:}$ We did not find any significant difference in predictive power between raw and processed mammograms in our study. Our models scored comparable $\kappa$ values in comparison with results from literature where they assessed agreement between radiologists. Missclassifications of our models were associated with dense lesions and faulty segmentation of breast tissue and pectoral muscle.

Keywords:Mammography, breast density, BI-RADS classification, multinomial logistic regression, ANOVA, mRMR

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back