Parkinsonova bolezen (PD) je progresivna možganska motnja, za katero so značilne motnje gibanja, kot so tremor, okorelost, počasnost in omotica, ter nemotorični simptomi, ki vključujejo motnje spanja, zaprtje, težave s koncentracijo, depresijo in čustvene spremembe. Zaradi klinične heterogenosti PD so v številnih kliničnih in raziskovalnih študijah obravnavali obstoj podtipov bolnikov s PD, kar lahko prispeva k bolj prilagojenemu zdravljenju in izboljšanju kakovosti življenja. Predstavljamo metodologijo za odkrivanje podtipov bolnikov s PD z uporabo podatkov o bolnikih iz študije Fox Insight (FI). Nabori podatkov izhajajo iz vprašalnikov, za katere z rutinskimi študijskimi obiski zbirajo podatki o bolnikovih simptomih in zdravilih.
Razvrščanje pacientov v podtipe je v bistvu problem združevanja podatkov iz časovnih vrst. V naši nalogi problem rešujemo z algoritmom k-means in s spektralnim združevanjem v okviru učenja z več pogledi. Opis dobljenih podtipov dobimo z generiranjem pravil. Razumevanje odločanja je v medicini ključnega pomena, zato smo odločitvena drevesa uporabili kot preprosto, a razložljivo orodje za opis podtipov. Pomemben del obvladovanja bolezni je razumevanje napredovanja bolezni. Z opazovanjem prehodov pacientov med podtipi tekom zaporednih obiskov analiziramo napredovanje bolezni s pomočjo preskočnih n-gramov.
|