izpis_h1_title_alt

Uporaba simulatorja vožnje za ocenjevanje vozniških sposobnosti nevroloških pacientov
ID Motnikar, Lenart (Author), ID Sodnik, Jaka (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/6617/ This link opens in a new window

Abstract
V zadnjih letih se kot alternativa sodobnim pristopom k ocenjevanju vozniških sposobnosti nevroloških bolnikov ponujajo simulatorji vožnje, saj omogočajo hitro, standardizirano in ekološko veljavno ocenjevanje. Toda kljub rastočemu številu raziskav, ki preučujejo vozne značilnosti nevroloških pacientov, še nobena dosedanja raziskava ni primerjala bolnikov, ki so smatrani kot vozniško zmožni, s tistimi, ki niso. Z namenom informiranja razvoja prihodnjih simulatorskih orodij za ocenjevanje in rehabilitacijo je pričujoča raziskava primerjala vozniške značilnosti bolnikov, ki so bili na podlagi standardnega postopka za oceno vozniške zmožnosti v pristojni rehabilitacijski ustanovi spoznani za sposobne, pogojno sposobne ali nesposobne. V raziskavi je sodelovalo 95 oseb z različnimi nevrološkimi boleznimi, vključenih v program celostne vozniške rehabilitacije, ki združuje klinično, funkcionalno in nevropsihološko obravnavo, pospremljeno s preizkusom na cesti. Udeleženci so v simulatorju vožnje vozili skozi tri scenarije z visoko stopnjo tveganja, ki so posnemali ruralno, avtocestno in mestno okolje. Iz podatkov o vožnji so bile za vsak scenarij posebej izračunane različne opisne spremenljivke, nanašajoče na reakcijski čas, nadzor vozila, upoštevanje cestnoprometnih predpisov in lastnosti gibanja oči. Primerjava skupin z analizo variance je v vseh scenarijih med sposobno in nesposobno skupino razkrila statistično značilne razlike v reakcijskih časih. Na avtocesti sta se skupini razlikovali v spremenljivosti volanskega kota, frekvenci zavijanja, zanemarjanju smernikov in rabi desnega ogledala, v mestu pa v spremenljivosti položaja na voznem pasu, številu nesreč in stopnji prehitre vožnje. V nekaterih izmed naštetih kombinacij spremenljivk in scenarijev sta se značilno razlikovali tudi nesposobna in pogojno sposobna skupina, razlike med sposobno in pogojno sposobno skupino pa so bile značilne samo v rabi vzvratnega ogledala na avtocesti. Na podatkih o vožnji so bili nato naučeni klasifikatorji metode podpornih vektorjev. Najuspešnejša modela sta pravilno razvrstila 59% voznikov pri trirazredni nalogi ter 82% pri dvorazredni nalogi, kjer so se razvrščali samo sposobni in nesposobni vozniki. Rezultati kažejo, da je s simulatorjem vožnje mogoče zajeti razlike v voznih značilnostih različno sposobnih nevroloških bolnikov. Z izjemo reakcijskih časov nobena izmed preučevanih spremenljivk ni izražala statistično značilnih razlik v več kot enem scenariju. To kaže na pomembnost skrbnega načrtovanja okolij, da čimbolj ustrezajo želenim merilom vozniških zmožnosti. Zmerna uspešnost razvrščanja voznikov sicer kaže, da izbrani scenariji niso najbolj primerni za ocenjevanje voznikov, z vidika nadaljnjega razvoja tovrstnih orodij pa so takšni rezultati vendarle obetavni. Raziskava se konča z razpravo o načinih za izboljšanje simulatorskih metod in predlaga smernice za nadaljnji razvoj.

Language:Slovenian
Keywords:simulacija vožnje
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2021
PID:20.500.12556/RUL-125015 This link opens in a new window
COBISS.SI-ID:53220355 This link opens in a new window
Publication date in RUL:02.03.2021
Views:1075
Downloads:182
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Driving simulator-based assessment of neurological patients' driving abilities
Abstract:
In recent years, driving simulators have emerged as a promising alternative to contemporary driving ability assessment methods of neurological patients, as they offer an opportunity for a fast, standardized, and ecologically valid evaluation. However, despite growing research on the driving characteristics of neurological patients, no study has so far compared patients deemed fit and unfit to drive. To inform the development of future simulator tools for assessment and rehabilitation, the current study compared driving characteristics of patients, who were, based on a standard procedure in a competent rehabilitation facility, found to be fit, conditionally fit, or unfit to drive. The study included 95 patients with various neurological diseases, participating in a comprehensive driver rehabilitation program, which combines clinical, functional, neuropsychological, and on-road assessment. The subjects drove through three high-risk scenarios in a driving simulator, simulating rural, highway, and urban environments. For each scenario, various descriptive variables were calculated from the driving data, describing reaction times, vehicle control, traffic rule compliance, and eye-tracking characteristics. Group comparison using analysis of variance revealed significant differences in reaction times between the fit and the unfit group, regardless of the scenario. On the highway, the groups significantly differed in the variability of steering wheel angle, steering wheel reversal rate, turn signal neglect rate, and the use of the right side-view mirror. In the city, they differed in lane position variability, speeding rate, and the number of accidents. In some of the listed scenario-variable combinations, differences were also observed between the unfit and conditionally fit group, while the fit and the conditionally fit group only differed in the use of the rear-view mirror on the highway. The driving parameters were then used to train support vector machine classifiers. The best-performing models correctly classified 59% of drivers in the multiclass and 82% in the binary task, where only the fit and unfit drivers were classified. The results show that driving simulators can indeed capture the differences in driving characteristics of neurological patients with different driving abilities. Except for reaction times, no variable exhibited significant differences in more than one scenario, which points to the importance of carefully designing the environments to best suit the desired measures of driving performance. The moderately successful performance of classification models indicates that the selected scenarios are not optimal for driver evaluation, but in terms of future development of such tools, the results are nonetheless promising. The study finishes by discussing ways to improve simulator-based methods and provides guidelines for their further development.

Keywords:driving simulation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back