izpis_h1_title_alt

Uvod v slučajne grafe
ID Mencin, Matej (Author), ID Šparl, Primož (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/6552/ This link opens in a new window

Abstract
V magistrskem delu obravnavamo različne teme iz teorije slučajnih grafov. Slučajne grafe si lahko predstavljamo kot grafe na izbranem številu vozlišč, pri čemer pa struktura grafa ni »fiksna«, temveč se spreminja glede na izbrano verjetnost posamezne povezave oziroma glede na odločitev, koliko povezav naključno izberemo iz množice vseh možnih povezav grafa. V magistrskem delu raziskujemo osnovne lastnosti slučajnih grafov in se sprašujemo o tem, kdaj v slučajnem grafu obstaja/ne obstaja določena lastnost, kot je npr. povezanost grafa. Prav tako predstavimo verjetnostne metode v slučajnih grafih. Gre za pomembno metodo v matematiki, s katero običajno dokazujemo obstoj določenega objekta, ne da bi ta objekt tudi konstruirali. Obenem pa nas pri slučajnih grafih zanima tudi »problem« majhnih podgrafov oziroma kdaj se v slučajnem grafu pojavi določen podgraf, kot je npr. drevo, cikel, polni graf itn. Ob koncu magistrskega dela se sprašujemo o obstoju ogromne komponente v grafu in empirično predstavimo njen razvoj in znane štiri faze razvoja. Ker v slovenskem prostoru še ni veliko literature na to temo, je glavni namen magistrskega dela predvsem ta, da bralcu na razumljiv in enostaven način predstavimo teorijo slučajnih grafov in po možnosti v bralcu vzbudimo interes za nadaljnje raziskovanje. Delo je »uvertura« v teorijo slučajnih grafov, zato smo nekoliko podrobneje obravnavali tudi teorijo verjetnosti in teorijo grafov, ki sta temelja teorije. Kot dodatek k magistrskemu delu pa smo na koncu, v prilogi, vključili tudi poglavje iz teorije mere, ki je ključna pri aksiomatski opredelitvi verjetnostnega računa.

Language:Slovenian
Keywords:slučajni graf
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Year:2020
PID:20.500.12556/RUL-124912 This link opens in a new window
COBISS.SI-ID:44464643 This link opens in a new window
Publication date in RUL:02.03.2021
Views:802
Downloads:138
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Introduction to random graphs
Abstract:
In the master's thesis, we discuss various topics from the theory of random graphs. Random graphs can be seen as graphs on a selected number of vertices, where the structure of the graph is not ‘‘fixed’’, but changes according to the selected probability for each possible edge, or according to the decision of how many edges are randomly selected from the set of all possible graph edges. In the master's thesis we explore various basic properties of random graphs and consider the question of when a random graph has a certain graph property, such as being connected. We also present probabilistic methods in random graphs, which provide an important tool in mathematics for proving the existence of a certain object without ‘‘constructing’’ that object. At the same time, in the case of random graphs, we are also interested in the ‘‘problem’’ of small subgraphs, i.e. we consider the question of when a certain subgraph appears in a random graph, such as tree, cycle, complete graph, etc. At the end of the master's thesis we ask ourselves about the existence of a giant component in the graph and empirically present its development and the (already) known four phases of this development. As there is not much literature currently available on this topic in Slovene, the main purpose of the master's thesis is to present the basics of the theory of random graphs to the reader in an understandable and simple way and, if possible, to arouse the reader's interest in further research. The work is an ‘‘overture’’ to the theory of random graphs, which is why we also discussed the basics of probability theory and graph theory, on which the theory of random graphs is based. As a supplement to the master's thesis, in the appendix, we also include a section on measure theory, which is needed for an axiomatic definition of probability.

Keywords:random graph

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back