Details

Opportunities and challenges of machine learning implementation to predict debt collection performance : master's thesis
ID Knechtl, Jernej (Author), ID Jaklič, Jurij (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://www.cek.ef.uni-lj.si/magister/knechtl3955-B.pdf This link opens in a new window

Language:English
Keywords:informatics, information technology, artificial intelligence, learning, business process, debts, algorithms
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:EF - School of Economics and Business
Place of publishing:Ljubljana
Publisher:[J. Knechtl]
Year:2020
Number of pages:III, 65, 2 str.
PID:20.500.12556/RUL-124628 This link opens in a new window
UDC:659.2:004
COBISS.SI-ID:40005891 This link opens in a new window
Publication date in RUL:08.02.2021
Views:1866
Downloads:182
Metadata:XML DC-XML DC-RDF
:
KNECHTL, Jernej, 2020, Opportunities and challenges of machine learning implementation to predict debt collection performance : master’s thesis [online]. Master’s thesis. Ljubljana : J. Knechtl. [Accessed 26 July 2025]. Retrieved from: http://www.cek.ef.uni-lj.si/magister/knechtl3955-B.pdf
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Priložnosti in izzivi izvajanja strojnega učenja za napovedovanje uspešnosti izterjave dolgov
Keywords:informatika, informacijska tehnologija, umetna inteligenca, izobraževanje, poslovni proces, dolgovi, algoritmi

Similar documents

Similar works from RUL:
  1. Analiza konkurenčnosti poslovanja slovenskih bank s prebivalstvom
  2. Borza
  3. Unovčevanje menic pri bankah
  4. Uvajanje SEPA v Sloveniji
  5. Tržne poti do vlagateljev vzajemnih skladov
Similar works from other Slovenian collections:
  1. Vloga osebnega bančnika v Sloveniji
  2. Poslovno tveganje v bankah
  3. Banka kot poslovni partner podjetja
  4. Zadovoljstvo bančnih komiteentov na Goriškem
  5. Tveganja v poslovni banki

Back