izpis_h1_title_alt

Pregled in uporaba računskih metod za analizo ritmične pojavnosti dogodkov
ID Velikajne, Nina (Author), ID Moškon, Miha (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,20 MB)
MD5: B7E6EEA8FC016FA014BB1BD6E469AEBC

Abstract
V okviru diplomskega dela smo vzpostavili metodologijo za analizo ritmične pojavnosti dogodkov. Implementirali smo zbirko funkcij, ki jih lahko neposredno uporabimo pri analizi cirkadianih števnih podatkov. Za analizo tovrstnih podatkov moramo združiti metode za detekcijo ritma z metodami za števne podatke. Za detekcijo ritma in transformacijo vhodnih podatkov smo uporabili metodo cosinor. Implementirana računska metoda dovoljuje tudi poljubno nastavljanje števila komponent. Za analizo števnih podatkov in reševanje regresijskega problema smo uporabili pet računskih modelov, in sicer Poissonov model, generaliziran Poissonov model, Poissonov model z inflacijo ničel, negativen binomski model in negativen binomski model z inflacijo ničel. Vzpostavljena metoda omogoča primerjavo in iskanje najbolj ustreznega računskega modela z optimalnim številom komponent. Vsebuje tudi funkcije, ki omogočajo primerjavo ritma v odvisnosti od različnih faktorjev. Celotna računska metoda je bila testirana na dveh prometnih podatkovnih zbirkah, ki so nam jih posredovali z Ministrstva za infrastrukturo.

Language:Slovenian
Keywords:števni podatki, ritmični podatki, cirkadiani ritem, cosinor, pojavnost dogodkov, regresija, promet
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2021
PID:20.500.12556/RUL-124591 This link opens in a new window
COBISS.SI-ID:50587907 This link opens in a new window
Publication date in RUL:05.02.2021
Views:1246
Downloads:140
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Overview and application of computational approaches for the analysis of rhythmicity in count data
Abstract:
In the thesis we have established a methodology for the analysis of rhythmicity in count data. We have implemented a set of functions, that we can use directly for the analysis of circadian count data. To analyse this type of data, we need to combine methods for rhythmicity detection with methods for analysing count data. For the purpose of rhythmicity detection and transformation of input data, we have used the cosinor method. The implemented computational method allows to identify the number of components automatically. For the analysis of the count data and the solution of the regression problem we have used five computational models -- Poisson model, generalized Poisson model, zero-inflated Poisson model, negative binomial model, and zero-inflated negative binomial model. The established method allows us to compare and find the most suitable model with the optimal number of components. The method also includes functions to compare the rhythm in dependence of different factors. The complete method was tested on two traffic datasets obtained from the Ministry of Infrastructure of Republic of Slovenia.

Keywords:count data, rhythmic data, circadian rhythm, cosinor, event occurrence, regression, traffic

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back