izpis_h1_title_alt

Spajkalna postaja kot učni pripomoček za učenje programiranja mikrokontrolerjev
ID ROZMAN HADŽIČ, ŽAN (Author), ID Pirc, Matija (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,75 MB)
MD5: 03A1D963583D250C5309A739CDCE41AB

Abstract
V diplomski nalogi sta predstavljena razvoj in izdelava spajkalne postaje. Namen dela je izdelati sistem, ki opravlja funkcijo spajkalne postaje in ima dve posebnosti: je kompatibilen z različnimi tipi spajkalnih ročic in kontroliran z razvojno ploščo za učenje programiranja MISKO V2. Slednji uporabniku omogoča, da sprogramira postajo po lastnih željah, s čimer ponuja možnost za učenje programiranja mikrokrmilnikov in regulacijskih tehnik. Spajkalno postajo sestavljajo napajalni sklop, merilnik temperature spajkalne konice, sklop za merjenje in kontrolo toka grelca ter sklop za komunikacijo z uporabnikom in priključitev MISKO-ta. Jedro spajkalne postaje, ki upravlja celotni sistem, je Atmel-ov procesor na razvojni plošči. Napajalni sklop je razdeljen na dva dela. Prvi del s transformatorjem zniža omrežno napetost na 24 V, jo usmeri in zgladi. Ta napetost je uporabljena za napajanje grelca in drugega dela napajalnika. Drugi del je stikalni napajalnik, ki nestabilno enosmerno napetost 24 V zniža in stabilizira na 5 V, za napajanje ostalih sklopov. Za temperaturne senzorje večina spajkalnikov uporablja termočlene, ki informacijo o temperaturi podajo v obliki napetosti. Za branje temperature termočlenov je uporabljeno namensko integrirano vezje z vgrajeno temperaturno kompenzacijo hladnega spoja. Vezje za krmiljenje toka skozi grelec je izvedeno kot stikalni napajalnik navzdol (angl. step-down converter) z neprekinjenim tokom, ki ga krmilimo s pulzno širinsko modulacijo. Tak način krmiljenja zmanjša hitre spremembe toka in s tem motnje, ki jih generira vezje. Velikost toka grelca zaznavamo kot padec napetosti na merilnem uporu, skozi katerega teče tok. Majhno napetost na merilnem uporu z diferencialnim ojačevalnikom prilagodimo območju analogno digitalnega pretvornika. Uporabnik nadzoruje spajkalno postajo z dvema potenciometroma in inkrementalnim dajalnikom, ki so postavljeni na lastnem tiskanem vezju. Vrednosti nastavitev, temperature in toka se izpišejo na LCD zaslonu, ki je že vgrajen v razvojno ploščo MISKO V2. Merjenje temperature z uporabljeno spajkalno ročico ni natančno na celotnem delovnem območju spajkalne postaje, predvidoma zaradi proizvajalčeve cenejše izvedbe termočlena. Dodatne napake v branju temperature povzroča tok skozi grelec. Zato je narejena dvojna programska korekcija temperature, ki omogoči pravilno merjenje na celotnem temperaturnem območju, neodvisno od velikosti toka grelca. Regulacija temperature je izvedena programsko s PID regulatorjem, ki določa vrednost delovnega cikla PWM signala. S pomočjo Matlab aplikacij sta narejena identifikacija odziva grelca spajkalnika in njegov matematični model, na podlagi katerega se nastavi parametre za želeno delovanje regulatorja. Odziv in hitrost regulacije spajkalne postaje sta verificirana na 70 W spajkalni ročici. Končan sistem opravlja funkciji spajkalne postaje in platforme za učenje programiranja. Ponuja dokaj široko izbiro spajkalnih ročic, premore 80 W moči, menjava razvojne plošče pa je hitra in enostavna. Regulacija temperature je stabilna, z majhnimi prevzponi in zadovoljivo hitrostjo.

Language:Slovenian
Keywords:regulator, PID, spajkalna postaja, spajkalna ročica, grelec, senzor, termočlen, kontrola toka, temperatura, razvojna plošča, Matlab, mikrokrmilnik
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2021
PID:20.500.12556/RUL-124455 This link opens in a new window
Publication date in RUL:22.01.2021
Views:1322
Downloads:198
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Soldering station designed as a learning tool for microcontroller programming
Abstract:
The diploma thesis presents development and manufacture of a soldering station. The purpose is to build a system which performs the function of a soldering station and has two special features: it is compatible with different types of soldering handles and controlled by the development board for learning programming MISKO V2. The latter enables the user to program the station according to their own wishes, thus offering the opportunity to learn programming of microcontrollers and regulation techniques. The soldering station consists of a power supply, a soldering iron temperature sensor reader, a unit for measuring and controlling the heater current, and a unit for communication with user and for MISKO connection. The core of the soldering station which manages the entire system is Atmels processor on the development board. The power supply is divided into two parts. The first part lowers the mains voltage to 24 V, rectifies it and smoothens it. This voltage is used to power the heater and the second part of the power supply. The second part is a step down buck converter which lowers and stabilizes the unstable 24 V DC to stable 5 V DC to power other parts of the system. Most soldering handles use thermocouple for measuring temperature. They provide temperature information in the form of voltage. The dedicated integrated circuit with built-in cold junction compensation is used to read the temperature of the thermocouple. The current control circuit topology is similar to a buck converter with continuous current, controlled by pulse width modulation. That way of control prevents current spikes and emissions generated by the circuit. The magnitude of the heater current is measured as the voltage drop across the shunt resistor through which the current flows. The low voltage across the shunt resistor is adjusted with a differential amplifier to the measurement level of analog- to- digital converter. The user controls the soldering station with two potentiometers and an incremental encoder which are located on its own printed circuit board. The values of settings, temperature and current measurements are displayed on the LCD screen, which is already integrated into the MISKO V2 development board. The temperature measurement with the used soldering handle is not accurate in the entire working range of the soldering station, presumably due to the manufacturer’s cheaper design of the thermocouple. Additional errors in temperature reading are caused by current flow through the heater. Therefore, a double software temperature correction is made enabling correct measurement over the entire working temperature range, regardless of the current magnitude of the heater. The temperature regulation is performed programmatically with a PID controller which determines the value of the duty cycle of the PWM signal. With the help of the Matlab application, the identification of the soldering heater response is made along with its mathematical model, on the basis of which the parameters for the desired operation of the controller are set. In our case the response and the speed of regulation were tuned and verified on a 70 W soldering iron. The finished system functions as a soldering station and a platform for learning programming. It features compatibility with a fairly wide range of soldering handles, has 80 W of power, and additionally replacement of the development board is fast and easy. Achieved temperature regulation is stable with small overshoots and satisfactory speed.

Keywords:controller, PID, soldering station, heater, thermocouple, soldering handle, current control, temperature control, development board, Matlab, microcontroller

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back