izpis_h1_title_alt

Uporaba računske dinamike tekočin za vrednotenje mešanja v farmacevtskih mešalnih posodah
ID Oblak, Blaž (Author), ID Bratkovič, Tomaž (Mentor) More about this mentor... This link opens in a new window, ID Pohar, Andrej (Comentor)

.pdfPDF - Presentation file, Download (2,94 MB)
MD5: B8AAED151A3E9001519E648AB1A4EC2F

Abstract
Razumevanje dejavnikov, ki vplivajo na hidrodinamsko okolje v mešalnih posodah, je izrednega pomena v farmacevtski industriji. Mešanje, raztapljanje in kristalizacija so nekateri procesi, ki so pogojeni z okoljem v mešalnih posodah. Poznavanje okolja nam omogoča optimizacijo procesov in skladanje s smernicami v farmacevtski industriji, ki skrbijo za zdravila z načrtovano kakovostjo. Računska dinamika tekočin nam omogoča optimizacijo omenjenih procesov z zmanjšano količino eksperimentalnih naporov in boljšim poznavanjem lastnosti toka. Podrobnejše poznavanje toka nam poleg optimizacije procesov omogoča olajšano povečevanje ali pomanjševanje procesa. V magistrski nalogi smo ovrednotili tok v farmacevtski mešalni posodi. Tok smo vrednotili s primerjavo med modelom, pripravljenim s pomočjo računske dinamike tekočin, in eksperimentalnimi podatki. Hidrodinamske pogoje smo eksperimentalno ovrednotili s testom sledljivca z metodo merjenja prevodnosti, medtem ko smo proces raztapljanja spremljali s pomočjo infrardeče spektroskopije. Za primerjavo smo uporabili simulacijo računske dinamike tekočin, natančneje model k-ε, ki ga pogosto uporabljajo v industriji in se je v preteklosti izkazal kot zelo ekonomičen z zadovoljivimi rezultati. Glede na izračunane parametre tokovnega profila v mešalni posodi smo izdelali napovedni model za oceno časa raztapljanja modelne snovi. Model smo vrednotili za različne konfiguracije mešalne posode ter različne hitrosti mešanja. Test sledljivca je pokazal, da lahko v večini primerov čas pomešanja določimo s simulacijo. Vidnejše razlike smo zaznali pri počasnejših hitrostih mešanja in večjih polnitvah mešalne posode. Bolj podroben opis hidrodinamskih pogojev je z uporabljenim modelom in izbranimi eksperimentalnimi tehnikami omejen. Napovedni model za proces raztapljanja se je dobro izkazal za izbrano kombinacijo modelne snovi in konfiguracijo mešalne posode. Napovedni model je za industrijsko uporabnost potrebno preveriti še na industrijski oz. polindustrijski skali, njegovo splošnejšo uporabnost pa še z drugimi modelnimi snovmi.

Language:Slovenian
Keywords:računska dinamika tekočin, mešanje, raztapljanje
Work type:Master's thesis/paper
Organization:FFA - Faculty of Pharmacy
Year:2020
PID:20.500.12556/RUL-122218 This link opens in a new window
Publication date in RUL:28.11.2020
Views:1018
Downloads:181
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The use of computational fluid dynamics for evaluation of mixing in pharmaceutical mixing vessels
Abstract:
Understanding the effects that homogenization parameters, liquid-solid properties and equipment have on the hydrodynamic environment in mixing vessels is of paramount importance in pharmaceutical industry. Mixing, dissolution, and crystallization are some of the processes that are affected by the hydrodynamic environment in the mixing vessels. Understanding the environment enables process optimization and is essential to comply with pharmaceutical industry guidelines. Computational fluid dynamics allows for optimization of these processes with a reduced amount of experimental effort and offers a better insight into the properties of the flow. In addition to process optimization, a more detailed knowledge of the flow facilitates scale-up and scale-down processes. In the following thesis, we evaluated the flow in a pharmaceutical mixing vessel. The flow was evaluated by comparing a computational fluid dynamics simulation with real experimental data. We used the k-epsilon model, which in the past has proven to be very economical and provides satisfactory results for most of the flows used in pharmaceutical manufacturing. Based on the simulated parameters of the hydrodynamic profiles in the mixing vessel, we made a predictive model for estimating the dissolution time of the model substance. The model was evaluated for different mixing vessel configurations and different mixing speeds. The tracer test showed that in most cases the mixing time can be determined to a sufficient extent by simulation results. Noticeable differences were observed at slower mixing speeds and greater filling volume of the mixing vessel. A more detailed description of the hydrodynamic conditions is limited by the model used and the experimental techniques chosen. The predictive model for the dissolution process proved to be good for the selected combination of model material and the mixing vessel configuration. For industrial applicability, the prediction model must be checked on the industrial or semi-industrial scale and its general applicability should be checked with other substances that have different dissolution kinetics.

Keywords:computational fluid dynamics, homogenization, dissolution

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back