This thesis presents a numerical model of a multipurpose board with experimentally obtained material properties. By using the proper numerical model, it is possible to predict the properties of stiffness and strength of the board before the production of the prototype itself. Since virtual testing and optimization are faster than their experimental versions, this can enhance our prototype’s quality when compared to our competition. The thesis also presents a survey of elastic behaviour of laminate and failure hypothesis of each individual composite layer. By using FEM we increased the stiffness and strength of the board. Numerical optimization enabled the board to withstand given critical loads.
|