Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Discriminative correlation filter with segmentation and context for robust tracking
ID
Lampe, Ajda
(
Author
),
ID
Kristan, Matej
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(19,82 MB)
MD5: AE9AF8B05177DD8DC5AF9D2397317625
Image galllery
Abstract
Visual object tracking is an area in the field of computer vision, which has seen great popularity increase due to a large availability of video data. There are many different tracking tasks, such as multiple object tracking, long-term tracking and specialized trackers, expected to perform well in a very specific domain. In this work, we focus on online generic short-term single object tracking, which can be considered the base visual tracking task and can be adaptable to any of the previously mentioned tasks. We propose a new tracker, based on correlation filtering, augmented with context information and a predicted object segmentation mask. The results on benchmarks fall far behind the current state-of-the-art, however the proposed method consistently outperforms baseline trackers, which shows the methods potential for future improvements.
Language:
English
Keywords:
computer vision
,
visual object tracking
,
tracking by detection
,
correlation
,
segmentation
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2020
PID:
20.500.12556/RUL-121958
COBISS.SI-ID:
40159235
Publication date in RUL:
12.11.2020
Views:
1549
Downloads:
303
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
LAMPE, Ajda, 2020,
Discriminative correlation filter with segmentation and context for robust tracking
[online]. Master’s thesis. [Accessed 18 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=121958
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Diskriminativni korelacijski filter s segmentacijo in uporabo konteksta za robustno sledenje
Abstract:
Vizualno sledenje objektom je področje računalniškega vida, ki je v zadnjih letih doživelo velik razcvet, zahvaljujoč dostopnosti video vsebin. Problem lahko razdelimo na več podnalog, na primer sledenje več objektom, dolgoročno sledenje ali specializirano sledenje za točno določeno domeno. V tem delu se omejimo na splošne kratkoročne sledilnike, ki sledijo enemu objektu. To lahko namreč razumemo kot najbolj osnovno nalogo vizualnega sledenja, ki jo lahko razširimo za delovanje na prej omenjenih problemih. V delu predstavimo nov sledilnik, ki temelji na sledenju s korelacijskimi filtri, razširimo pa ga z uporabo kontekstne informacije in segmentacijske maske. V primerjavi z ostalimi sledilniki predlagana metoda sicer ne dosega rezultatov, primerljivih z najmodernejšimi sledilniki, vendar pa dosledno dosega boljše rezultate od osnovnejših sledilnikov, kar kaže na potencial metode za nadaljnje izboljšave.
Keywords:
računalniški vid
,
vizualno sledenje objektom
,
sledenje z detekcijo
,
korelacija
,
semantična segmentacija
Similar documents
Similar works from RUL:
Izboljšan vizualni model za sledenje s segmentacijo
Sledenje objektov s segmentacijo in napovedovanjem globinskih barvnih slik
Siamski sledilnik s segmentacijo za robustno lokalizacijo tarče
Segmentacija lebdečih predmetov v podatkih LIDAR
Destilacija znanja globokih modelov za biometrijo beločnice
Similar works from other Slovenian collections:
No similar works found
Back