Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Shannon-Nyquistov izrek vzorčenja in zgoščeno zaznavanje : magistrsko delo
ID
Ritovšek, Tanja
(
Author
),
ID
Saksida, Pavle
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,90 MB)
MD5: 68914B6D095A01F7F4C25871435F8F47
JPG - Appendix,
Download
(588,79 KB)
MD5: A9019FEEAED15E0E65AEAC3231A0C691
JPG - Appendix,
Download
(67,90 KB)
MD5: D1C7FD9868655EB297814A2138CE3BCA
This document has even more files. Complete list of files is available
below
.
Image galllery
Abstract
V magistrskem delu se seznanimo s področjem teorije signalov - osnovnimi pojmi in tehniko obdelave signalov. Osredotočimo se na popolno rekonstrukcijo signala iz serije meritev. Ob tem se srečamo s teorijo Fourierove transformacije, ki nam omogoča predstavitev (originalnega) signala v frekvenčni domeni. Največ pozornosti nato posvetimo izreku vzorčenja, imenovanemu tudi Shannon-Nyquistov izrek, ki velja za eno osnovnih načel teorije informacij in diskretne obdelave signalov. Določa spodnjo mejo za število meritev, ki jo je potrebno doseči, da lahko splošni signal popolnoma rekonstruiramo. Z različnimi matematičnimi sredstvi ga tudi dokažemo. Ob koncu naloge si ogledamo še tehniko zgoščenega zaznavanja, ki predstavlja nov pogled na klasično teorijo vzorčenja. Ta pravi, da lahko signal, ki je v določeni bazi redek, popolnoma rekonstruiramo tudi iz manjšega števila meritev, kot nam to zapoveduje Shannon-Nyquistov izrek.
Language:
Slovenian
Keywords:
Teorija signalov
,
Fourierova analiza
,
Poissonova sumacijska formula
,
teorija vzorčenja
,
Shannon-Nyquistov izrek
,
zgoščeno zaznavanje
,
linearni sistemi in programiranje
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2020
PID:
20.500.12556/RUL-121650
COBISS.SI-ID:
33238787
Publication date in RUL:
21.10.2020
Views:
1199
Downloads:
403
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Shannon-Nyquist sampling theorem and compressed sensing
Abstract:
In this work, we first introduce the field of signal theory - basic concepts and technique of signal processing. We mostly focus on complete signal reconstruction from a series of measurements. In doing so, we come across Fourier transform theory, which allows us to represent the (original) signal in the frequency domain. We then give most attention to the sampling theorem, also called the Shannon-Nyquist theorem, which is considered one of the basic principles of information theory and discrete signal processing. It sets the lower limit for the number of measurements that must be achieved in order to fully reconstruct the general signal. From various mathematical points of view, we also prove it. At the end of this paper, we take a closer look at the technique of compressed sensing, which represents a new perspective on classical sampling theory. It says that a signal, that is sparse in a given base, can also be completely reconstructed from a smaller number of measurements than the Shannon-Nyquist theorem dictates.
Keywords:
Signal theory
,
Fourier analysis
,
Poisson summation equation
,
sampling theory
,
Shannon-Nyquist theorem
,
compressed sensing
,
linear systems and programming
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Files
Loading...
Back