The thesis presents a framework and models for Web scraping of data on products from online stores and automatic classification of these produtcs into ECOICOP (European Classification of Individual Consumption according to Purpose) categories using machine learning. From classified products we are able to calculate an estimate of official HICP (Harmonized Index of Consumer Prices).
In the part of web scraping, we describe the problems and challenges we face when using web crawlers for automated transfer of data from the web. We touch upon the legislation in the field of Web scraping. We also implement a Web scraper in Python, which daily transfers data on approximately 30.000 products sold by the two largest Slovenian retailers.
In the second part, we make basic introduction to the field of machine learning, with an emphasis on the conversion of text and categorical variables into numerical ones. We present and implement two methods for processing text data - bag of words model and the word2vec algorithm. We describe the problems that arise due to the specifics of our dataset and present solutions to deal with them. We use machine learning to build a hierarhical model that predicts categories of ECOICOP an individual product belongs to.
In the last part, we use official methodology to calculate an estimate of price indices on different levels. Due to the avaliability of data, we focus only on section 01 - Food and non-alcoholic beverages. We obtain price indices comparable to the official ones, with deviations due to unknown official data sample in each group of products.
|