Details

Samodejna klasifikacija stavb z globokim učenjem : magistrsko delo št.: 109/II. GIG
ID Šanca, Simon (Author), ID Oštir, Krištof (Mentor) More about this mentor... This link opens in a new window, ID Mangafić, Alen (Comentor)

.pdfPDF - Presentation file, Download (15,40 MB)
MD5: 96E42C7E036FA11CF6040B87D8C8F60D

Abstract
Multispektralne podobe, bodisi letalski ali satelitski posnetki, zagotavljajo podrobne informacije o stanju površja. Klasifikacija na podlagi multispektralnih podob je ena izmed temeljnih nalog daljinskega zaznavanja. Podatke o stavbah vodimo v katastru stavb, ki ga moramo redno vzdrževati. Kot alternativne metode vzdrževanja se lahko uporabljajo metode računalniškega vida in strojnega učenja. Pri samodejni klasifikaciji stavb v zadnjih letih prednjačijo metode globokega učenja z uporabo konvolucijskih nevronskih mrež. V raziskavi smo uporabili konvolucijsko ogrodje Mask Region Convolutional Neural Network (Mask R-CNN) in razvili lastno podatkovno zbirko v formatu Microsoft Common Objects in COntext (MS COCO), ki smo jo uporabili za učenje modela zaznavanja stavb na podlagi bližnje infrardečih posnetkov cikličnega aerosnemanja (CAS) območja Slovenije iz leta 2019. Metodo za prepoznavo stavb smo preizkusili na izbranih območjih v Sloveniji in rezultate klasifikacije stavb analizirali. Rezultati samodejne klasifikacije stavb kažejo, da so metode globokega učenja primerne za iskanje in vzdrževanje podatkov o stavbah ter lahko nadomestijo ali se uporabijo kot pomoč pri že obstoječih metodah samodejne klasifikacije stavb.

Language:Slovenian
Keywords:geodezija, magistrska dela, GIG, globoko učenje, konvolucijske nevronske mreže, klasifikacija stavb, CAS, Mask R-CNN, prepoznava objektov, segmentacija objektov, samodejna klasifikacija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[S. Šanca]
Year:2020
Number of pages:XVIII, 45 str.
PID:20.500.12556/RUL-120610 This link opens in a new window
UDC:004.032.26:528.8(497.4)(043.3)
COBISS.SI-ID:37248771 This link opens in a new window
Publication date in RUL:23.09.2020
Views:2193
Downloads:310
Metadata:XML DC-XML DC-RDF
:
ŠANCA, Simon, 2020, Samodejna klasifikacija stavb z globokim učenjem : magistrsko delo št.: 109/II. GIG [online]. Master’s thesis. Ljubljana : S. Šanca. [Accessed 29 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=120610
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Automatic classification of buildings with deep learning : master thesis no.: 109/II. GIG
Abstract:
Multispectral satellite or aerial images provide detailed information about the Earth%s surface. Multispectal image based classification is one of the fundamental tasks in the field of remote sensing. Building data is organized in the buidling cadastre, which needs to be regularly updated. As alternative methods for building cadastre maintenance computer vision and machine learning can be used. In recent years deep learning with the emphasis on convolutional neural networks are in the forefront for automatic classification of buildings. We applied the region based convolutional framework called Mask Region Based Convolutional Neural Network (Mask R-CNN) for automatic building classification and developed a dataset in the Microsoft Common Objects in Context (MS COCO) format. The building dataset was used for the training of the models on near infrared aerial images from the last aerial imaging of Slovenia in year 2019. The proposed method was tested and evaluated on selected areas in Slovenia. The results show that automatic classification of buildings with deep learning is suitable for building detection and can be used either as a replacement of current techniques or to aid the existing ones.

Keywords:geodesy, master thesis, deep learning, convolutional neural networks, classification of buildings, CAS, Mask R-CNN, object detection, object segmentation, automatic classification

Similar documents

Similar works from RUL:
  1. ǂThe ǂimportance of cancer stem cells and epithelial-mesenchymal transition in the progression of non-small cell lung cancer
  2. Gene expression levels of the prolyl hydroxylase domain proteins PHD1 and PHD2 but not PHD3 are decreased in primary tumours and correlate with poor prognosis of patients with surgically resected non-small-cell lung cancer
  3. Study of phosphatidylethanolamine N-methyltransferase gene expression in non-small cell lung cancer tissue
  4. Usefulness of immunohistochemically determined epidermal growth factor receptor mutations in lung cancer
  5. Diabetes mellitus and physical activity
Similar works from other Slovenian collections:
  1. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer
  2. Outsourcing predictive biomarker testing in non-small cell carcinoma
  3. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer
  4. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer
  5. NSCLC molecular testing in Central and Eastern European countries

Back