Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Tehnike kombiniranja napovedi pri strojnem učenju ansamblov : delo diplomskega seminarja
ID
Bizjak, Sara
(
Author
),
ID
Todorovski, Ljupčo
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,93 MB)
MD5: 9C1ED2B547A298808E67BB87DA9B4538
Image galllery
Abstract
Ideja strojnega učenja ansamblov je zgraditi napovedni model z združevanjem večih modelov, kar pripomore k manjšanju napovedne napake. Ena ključnih komponent ansambla je funkcija za kombiniranje napovedi osnovnih modelov. V diplomskem delu obravnavamo dva tipa funkcij za kombiniranje napovedi klasifikacijskih modelov. Prvi je večinsko glasovanje, kjer vsi osnovni modeli enako prispevajo k napovedi ansambla. Drugi pa je uteževanje prispevka osnovnih modelov na osnovi njihove zmogljivosti. Ti dve funkciji kombiniranja implementiramo v programskem jeziku R in ju primerjamo na izbrani podatkovni množici.
Language:
Slovenian
Keywords:
strojno učenje
,
nadzorovano strojno učenje
,
klasifikacija
,
homogeni ansambli
,
naključni gozd
,
kombiniranje napovedi
,
uteževanje na osnovi zmogljivosti
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2020
PID:
20.500.12556/RUL-120588
UDC:
004.8
COBISS.SI-ID:
58738435
Publication date in RUL:
23.09.2020
Views:
1844
Downloads:
401
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BIZJAK, Sara, 2020,
Tehnike kombiniranja napovedi pri strojnem učenju ansamblov : delo diplomskega seminarja
[online]. Bachelor’s thesis. [Accessed 26 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=120588
Copy citation
Share:
Secondary language
Language:
English
Title:
Techniques for combining predictions in machine learning ensembles
Abstract:
Machine learning of ensembles aims at reducing the predictive error by integrating multiple models into a single one. One of the key components of algorithms for ensemble learning is combining predictions of the base models. In the thesis, we take a closer look at two functions for combining predictions. The first is majority voting, where all the base models contribute equally to the ensemble prediction. The other is performance weighting, where the contribution of a base model to the ensemble prediction is proportional to the model performance. Combination functions are also implemented in R and tested on a selected data set.
Keywords:
machine learning
,
supervised machine learning
,
classification
,
homogeneous ensembles
,
random forest
,
combining predictions
,
performance weighting
Similar documents
Similar works from RUL:
No similar works found
Similar works from other Slovenian collections:
No similar works found
Back