izpis_h1_title_alt

Tehnike kombiniranja napovedi pri strojnem učenju ansamblov : delo diplomskega seminarja
ID Bizjak, Sara (Author), ID Todorovski, Ljupčo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,93 MB)
MD5: 9C1ED2B547A298808E67BB87DA9B4538

Abstract
Ideja strojnega učenja ansamblov je zgraditi napovedni model z združevanjem večih modelov, kar pripomore k manjšanju napovedne napake. Ena ključnih komponent ansambla je funkcija za kombiniranje napovedi osnovnih modelov. V diplomskem delu obravnavamo dva tipa funkcij za kombiniranje napovedi klasifikacijskih modelov. Prvi je večinsko glasovanje, kjer vsi osnovni modeli enako prispevajo k napovedi ansambla. Drugi pa je uteževanje prispevka osnovnih modelov na osnovi njihove zmogljivosti. Ti dve funkciji kombiniranja implementiramo v programskem jeziku R in ju primerjamo na izbrani podatkovni množici.

Language:Slovenian
Keywords:strojno učenje, nadzorovano strojno učenje, klasifikacija, homogeni ansambli, naključni gozd, kombiniranje napovedi, uteževanje na osnovi zmogljivosti
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-120588 This link opens in a new window
UDC:004.8
COBISS.SI-ID:58738435 This link opens in a new window
Publication date in RUL:23.09.2020
Views:1683
Downloads:393
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Techniques for combining predictions in machine learning ensembles
Abstract:
Machine learning of ensembles aims at reducing the predictive error by integrating multiple models into a single one. One of the key components of algorithms for ensemble learning is combining predictions of the base models. In the thesis, we take a closer look at two functions for combining predictions. The first is majority voting, where all the base models contribute equally to the ensemble prediction. The other is performance weighting, where the contribution of a base model to the ensemble prediction is proportional to the model performance. Combination functions are also implemented in R and tested on a selected data set.

Keywords:machine learning, supervised machine learning, classification, homogeneous ensembles, random forest, combining predictions, performance weighting

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back