Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
An improved visual model for tracking by segmentation
ID
Nedanovski, Tilen
(
Author
),
ID
Kristan, Matej
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(1,57 MB)
MD5: A8E4330574E7355E06C3E2E0078E55C8
Image galllery
Abstract
As if in response to the increased focus of the field on visual object tracking and video object segmentation, this work features several trackers escalating the associations between the two disciplines. These trackers, in particular, build upon an existing D3S tracker that has the capacity to produce both highly-reliable localization as well as an accurate segmentation of the target. Furthermore, said products are used in future target state inference to inform the process and achieve excellent tracking performance. In recognition of the benefits reaped by involving segmentation in visual object tracking, this work proposes several trackers in an effort to further both the accuracy and robustness of the D3S, as well as to improve its speed of inference. Novel trackers are compounded from existing components of the D3S implementation along with other constituents giving prominence to the latest advancements in the field. Namely, the two backbones of the original implementation are merged into a single backbone, CARAFE modules are instated to replace the bilinear upsampling stages, Octave convolution is introduced to improve the speed of feature extraction and the attention mechanism is implemented to incorporate contextual information into the tracking process. Alongside this, the lack of dataset diversity inspires a synthetic dataset to be constructed and used in pre-training stages of representation learning. Finally, the suitability of proposed tracking architectures is determined through rigorous evaluation.
Language:
English
Keywords:
computer vision
,
visual object tracking
,
segmentation
,
correlation filters
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2020
PID:
20.500.12556/RUL-120554
COBISS.SI-ID:
34078979
Publication date in RUL:
22.09.2020
Views:
1543
Downloads:
157
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
NEDANOVSKI, Tilen, 2020,
An improved visual model for tracking by segmentation
[online]. Master’s thesis. [Accessed 18 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=120554
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Izboljšan vizualni model za sledenje s segmentacijo
Abstract:
Magistrsko delo obravnava obojestranske koristi med vizualnim sledenjem objektov in segmentacijo objektov v videoposnetkih. Plodovi te obravnave so sledilniki, ki temeljijo na obstoječi metodi sledenja D3S. Poleg visoko zanesljive lokalizacije je sledilnik D3S zmožen tudi natančne segmentacije sledenega objekta, kar dodatno prispeva k uspešnosti metode. To dejstvo tesneje povezuje pričujoči disciplini računalniškega vida. Skozi vsebino dela se koristi, ki jih prinaša segmentacija v sožitju z vizualnim sledenjem objektov, kažejo v več predlaganih sledilniških arhitekturah. Te arhitekture v prizadevanju za izboljšanje natančnosti in robustnosti metode D3S proces sledenja nadgrajujejo ter bogatijo z novimi informacijami. Ena izmed predlaganih arhitektur, na primer, združuje enaki, vendar prvotno ločeni ogrodji omrežja v eno samo v prid hitrosti sledenja. Spet druga vpeljuje operatorje CARAFE na mestih bilinearne interpolacije, in sicer z namenom vključitve informacij širšega konteksta v vzorčenje značilk. Iz enakih razlogov je v tretji arhitekturi dodan mehanizem pozornosti. Poleg novih arhitektur delo obsega tudi konstrukcijo sintetičnega nabora podatkov, navdih čemur so pomanjkljivosti obstoječih zbirk podatkov. Delo se zaključi z eksperimentalno analizo kot merilom uspešnosti in ustreznosti predlaganih metod ter krajšo razpravo.
Keywords:
računalniški vid
,
vizualno sledenje objektom
,
segmentacija
,
korelacijski filtri
Similar documents
Similar works from RUL:
Izboljšan vizualni model za sledenje s segmentacijo
Sledenje objektov s segmentacijo in napovedovanjem globinskih barvnih slik
Siamski sledilnik s segmentacijo za robustno lokalizacijo tarče
Segmentacija lebdečih predmetov v podatkih LIDAR
Destilacija znanja globokih modelov za biometrijo beločnice
Similar works from other Slovenian collections:
No similar works found
Back