izpis_h1_title_alt

Določanje debeline filmske obloge pelet z dinamično slikovno analizo : enoviti magistrski študijski program Farmacija
ID Rižner, Leon (Author), ID German Ilić, Ilija (Mentor) More about this mentor... This link opens in a new window, ID Jaklič, Miha Tomaž (Comentor)

.pdfPDF - Presentation file, Download (1,82 MB)
MD5: D05B84E41DCB31B564543A72334D2B6B

Abstract
Dinamična slikovna analiza je ena izmed novejših metod za določanje velikosti delcev, ki je kvalitetna dopolnitev uveljavljenim metodam, kot so sejalna analiza, statična slikovna analiza, laserska difraktometrija in vrstični elektronski mikroskop. Namen magistrske naloge je oceniti primernost dinamične slikovne analize za določanje prirasta debeline filmske obloge na peletah ter rezultate primerjati z že prej omenjenimi uveljavljenimi metodami. Pri slikovni analizi tridimenzionalno telo analiziramo na podlagi dvodimenzionalnih projekcij iz katerih računsko določimo različne parametre velikosti. Primerjava različnih parametrov velikosti za pravilne kroglice pokaže dobro ujemanje med njimi. Za analizo pelet nepravilnih oblik pa sta najboljši minimalni Ferretov premer in maksimalni premer tetive, saj izkazujeta najmanjši relativni standardni odklon med ponovitvami meritev. Najboljšo reprezentativnost sekundarnih vzorcev smo dosegli s kanalnim razdelilnikom in z vzorčenjem s spatulo po temeljitem mešanju primarnega vzorca. Pokazali smo, da je za analizo debeline filmske obloge, kjer potrebujemo natančne meritve, primeren vzorec med 4 g in 10 g z relativnim standardnim odklonom ponovitev manjšim od 0,7 %, medtem ko je za oceno velikosti pelet dovolj že 200 mg vzorec. Teoretično je debelina filmske obloge enaka razliki velikosti vstopnih in končnih pelet. Ugotovili smo, da bi tak pristop bil primeren pri določitvah debeline debelejših oblog. Za določitve tanjših oblog pa se je boljše izkazal izračun debeline z modelom linearne regresije, postavljenim z vzorci z različnimi masnimi nanosi obloge. Napovedi modela se od direktnih meritev debeline z vrstičnim elektronskim mikroskopom razlikujejo od 0,6 μm do 2,6 μm pri debelinah filmske obloge manjših od 17 μm. Model se je tako zaradi upoštevanja primarne napake vzorčenja, sekundarne napake vzorčenja in napake merilne naprave izkazal za bistveno primernejšega kot izračun z razliko velikosti. Primerjava rezultatov s komplementarnimi metodami sejalne analize, statične slikovne analize, vrstičnega elektronskega mikroskopa in laserske difraktometrije so bili primerljivi rezultatom dinamične slikovne analize. Za določitev debeline filmske obloge pa sta dovolj natančni le vrstični elektronski mikroskop in laserska difraktometrija.

Language:Slovenian
Keywords:pelete tehnologija iztiskanja tehnologija krogličenja dinamična slikovna analiza elektronski vrstični mikroskop laserska difraktometrija sejalna analiza dobra vzorčevalna praksa velikost delcev porazdelitev delcev
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[L. Rižner]
Year:2018
Number of pages:X, 57 f.
PID:20.500.12556/RUL-120273 This link opens in a new window
UDC:543:661.12(043.3)
COBISS.SI-ID:4657009 This link opens in a new window
Publication date in RUL:17.09.2020
Views:1138
Downloads:244
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Determination of pellet film coating theickness by dynamic image analysis
Abstract:
Dynamic image analysis is one of the novel approaches for measurment of particle size and is complementing more established methods like sieve analysis, static image analysis, laser diffraction and scanning electronic microscope. The purpose of this master thesis is to evaluate the ability of dynamic image analysis in determining pellet film coat thickness and comparing the results of before mentioned methods. With image analysis we are analysing three-dimensional objects with two-dimensional projections from which different size parameters can be calculated. Evaluation of particle shape on different size parameters showed no significant difference between them when analysing spherical particles. However, analysing irregular shaped particles minimal Ferrets diameter and minimal chord length gave best results with lowest relative standard deviation compared to diameter of circle with equivalent area and maximum Ferrets diameter. Secondary sampling with chute sampler and sampling with spatula after mixing the primary sample, showed best representativness of the sample. For determining the thickness of pellet film coating, larger samples within 4 g and 10 g resulted in more representative samples with relative standard deviation of less than 0,7 %, while smaller sized samples of 200 mg are enough for size estimation. Thickness of film coating, in theory, is equal to difference in size of starting cores and end pellets. However this simple mathematical approach is suitable for determination of thick coatings. For thinner coatings a model with linear regression of samples with different weight gain is a better approach. Results of the model showed differences ranging between 0,6 μm and 2,6 μm for coat thickness of less than 17 μm compared to results of scanning electron microscope. The model takes into account primary sampling error, secondary sampling error and error of measurement device, therefore it is superior to the simple approach mentioned above. The analysis results of selected samples with sieve analysis, static image analysis, laser diffraction and scanning electronic microscope were comparable to dynamic image analysis. However, for determining pellet film coating thickness only laser diffraction and scanning electronic microscope were accurate enough.

Keywords:Dynamic image analysis pellet film coating thickness scanning electron microscope laser difraction sieve analysis static image analysis shape parameters size parameters good sampling practice secondary sampling techniques particle size distribution

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back