izpis_h1_title_alt

Stabilnost aditivnih preslikav in izometrij : delo diplomskega seminarja
ID Kramar, Žan (Author), ID Šemrl, Peter (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (293,58 KB)
MD5: 6527F42CA83497E3F2A68851AAD548AA

Abstract
V diplomskem delu obravnavamo problem stabilnosti aditivnih preslikav in izometrij, oboje na evklidskih prostorih. Določimo vse zvezne preslikave, ki zadostijo Cauchyevi funkcijski enačbi na nekem evklidskem prostoru. Definiramo pojem $\delta$-aditivna preslikava za $\delta > 0$ in dokažemo, da za vsako $\delta$-aditivno preslikavo obstaja enolično določena aditivna preslikava, ki jo aproksimira. Pri tem je norma razlike manjša ali enaka $\delta$. Dokažemo tudi, da je $\delta$-aditivne preslikave $k$-tega reda za $k \ge 2$ mogoče aproksimirati z aditivnimi preslikavami. Pri tem se optimalna ocena aproksimacije izboljša. Dokažemo nekatere lastnosti izometrij in definiramo $\delta$-izometrijo za $\delta > 0$. Dokažemo, da za vsako $\delta$-izometrijo obstaja izometrija, za katero je norma razlike manjša od $10\delta$.

Language:Slovenian
Keywords:stabilnost funkcijskih enačb, aditivne preslikave, izometrije
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-120200 This link opens in a new window
UDC:517.5
COBISS.SI-ID:58714371 This link opens in a new window
Publication date in RUL:17.09.2020
Views:1084
Downloads:134
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Stability of additive transformations and isometries
Abstract:
The thesis addresses the problem of stability of additive transformations and isometries on euclidian spaces. Cauchy's functional equation is solved in the class of continious transformations. We define $\delta$-additive transformations for $\delta > 0$ and prove, that for every $\delta$-additive transformation there exists exactly one additive transformation, which approximates the former with norm of difference being less or equal to $\delta$. If we are dealing with $\delta$-additive transformation of $k$-th order for $k \ge 2$ the same property holds with a better approximation constant. We prove some properties of isometries and define $\delta$-isometries for $\delta > 0$. We prove that every $\delta$-isometry can be approximated by an isometry with the norm of difference being less than $10\delta$.

Keywords:stability of functional equations, additive transformations, isometries

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back