izpis_h1_title_alt

Kombinatorična teorija matrik : delo diplomskega seminarja
ID Drobnič, Vid (Author), ID Cigler, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (547,11 KB)
MD5: 4644E5E5D26869593039F8F135462FC6

Abstract
Delo opisuje nekatere osnovne rezultate kombinatorične teorije matrik. Kombinatorična teorija matrik je veja matematike, ki združuje kombinatoriko, teorijo grafov in linearno algebro. V prvem delu diplomske naloge si podrobneje ogledamo algebraične lastnosti (0, 1)-matrik. Klasičen problem tlakovanja pravokotnikov zapišemo z matrično enačbo in s pomočjo lastnosti (0, 1)-matrik rešimo zanimiv kombinatorični primer. V drugem delu diplomske naloge graf predstavimo z matriko sosednosti ter incidenčno matriko. Izpeljemo povezavo med tema dvema matrikama in definiramo Laplaceovo matriko grafa. Povežemo nekatere lastnosti grafa z algebraičnimi lastnostmi matrike sosednosti ter incidenčne matrike. Na koncu se podrobneje posvetimo Laplaceovi matriki grafa in izpeljemo formulo za izračun števila vpetih dreves v grafu.

Language:Slovenian
Keywords:(0, 1)-matrika, matrika sosednosti, spekter grafa, incidenčna matrika, Laplaceova matrika, kompleksnost grafa
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-120182 This link opens in a new window
UDC:512.64
COBISS.SI-ID:58842371 This link opens in a new window
Publication date in RUL:17.09.2020
Views:2343
Downloads:155
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Combinatorial matrix thoery
Abstract:
This thesis describes some of the basic results of combinatorial matrix theory. Combinatorial matrix theory is a branch of mathematics that connects combinatorics, graph theory and linear algebra. The first part of the thesis deals with algebraic properties of (0, 1)-matrices. We reformulate an elementary problem in geometry in terms of matrices and solve an interesting combinatorial problem with the help of the properties of (0, 1)-matrices. In the second part of the thesis we represent a graph with its adjacency matrix and its incidence matrix. We derive a relation between the two matrices and define a Laplacian matrix of a graph. We connect properties of a graph with algebraic properties of its adjacency and incidence matrix. At the and we discuss Laplacian matrix of a graph and derive a formula for calculating the number of spanning trees in a graph.

Keywords:(0, 1)-matrix, adjacency matrix, graph spectrum, incidence matrix, Laplacian matrix, graph complexity

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back