izpis_h1_title_alt

Primerjava in redukcija bio navdihnjenih metahevristik za optimizacijo
ID Bračko, Bjorn (Author), ID Kononenko, Igor (Mentor) More about this mentor... This link opens in a new window, ID Pičulin, Matej (Comentor)

.pdfPDF - Presentation file, Download (4,63 MB)
MD5: F52B9AE51235BB82B81FD9108F19DCD3

Abstract
Bio navdihnjena metahevristična optimizacija je zelo aktivno področje raziskav. V nalogi je narejen pregled bio navdihnjenih metahevrističnih algoritmov in razdelitev na podskupine. Izbral sem dva podobna algoritma (Optimizator sivih volkov in Algoritem optimizacije s kiti) in ju podrobno analiziral in primerjal. V primerjavi sem izpostavil ključne podobnosti in razlike obeh pristopov, ki sem jih nato prenesel v prevedbo. Implementiral sem eno prevedbo za vsak algoritem. Prevedbi sta vsebovali mehanizme za optimizacijo iz drugega algoritma. Testiranje je bilo izvedeno na dobro poznanih testnih funkcijah za optimizacijo. Pri testiranju sem opazil splošno poslabšanje učinkovitosti pri hibridih. Ugotovil sem, da različni mehanizmi za optimizacijo delujejo različno dobro na različnih testnih funkcijah in se večino časa ne mešajo najbolje. Vsebnost drugega algoritma lahko povzroči poslabšanje učinkovitosti, lahko povzroči izboljšanje, kjer bi se osnovni algoritem slabo odrezal, lahko pa tudi povroči močno poslabšanje, kjer bi osnovni algoritem dobil dober rezultat.

Language:Slovenian
Keywords:metahevristka, optimizacija, bio-navdihnjnena
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-120066 This link opens in a new window
COBISS.SI-ID:31183875 This link opens in a new window
Publication date in RUL:15.09.2020
Views:1137
Downloads:148
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison and reduction of nature inspired metaheuristics for optimization
Abstract:
Nature inspired metaheuristic optimization is a very active field of research. In this thesis I conducted an overview of nature inspired metaheuristics and made a comparison based on their features. I chose two very similar algorithms (Grey wolf optimizer and Whale optimization algorithm), made a detailed analysis of each one and a detailed comparison between the two. In the comparison I highlighted the key similarities and differences of both approaches which I then carried into the hybridization of the two. I implemented one hybrid for each of the algorithms. The hybrids contained mechanisms for optimizations from the other algorithm. Testing was done on well known test functions for optimization. In the results I noticed a general degradation of performance for the hybrid algorithms. I concluded that the different optimization mechanisms work with varying efficiencies for the different test functions and most of the time do not mix well. The presence of a different optimization mechanism from another algorithm can degrade performance in some cases, may improve it in others, where the original performs poorly, or may cause a significant degradation where the original performs well.

Keywords:metaheuristic, optimization, nature-inspired

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back