izpis_h1_title_alt

Analiza uporabe hiperelipsoidov pri ocenjevanju robustnosti biološkega procesorja
ID Nastran, Jurij (Author), ID Moškon, Miha (Mentor) More about this mentor... This link opens in a new window, ID Pušnik, Žiga (Comentor)

.pdfPDF - Presentation file, Download (1,23 MB)
MD5: 6B2FBA63E87959798BB5CF0F2142CCC1

Abstract
V okviru diplomske naloge predstavimo postopek analize robusnosti modelov sintetičnih bioloških gradnikov. Postopek analize demonstiramo na primeru modela biološkega procesorja. Robustnost ocenimo na podlagi volumna prostora dopustnih parametrov v visokodimenzionalnem prostoru. Ta volumen izračunamo z uporabo genetskih algoritmov, metode glavnih komponent, nazadnje pa z metodo Monte Carlo. V diplomski nalogi demonstriramo pomembnost učinkovitega reduciranja omejujočega prostora možnih Monte Carlo vzorčenj za pridobitev natančnejšega rezultata z manj ponovitvami. Namesto hiperkvadra predlagamo uporabo hiperelipsoidov. Implementiramo metodo naključnega enakomernega vzorčenja znotraj danega hiperelipsoida. Primerjamo tudi dva pristopa za računanje omejujočega hiperelipsoida s čim manjšim volumnom. Z uporabo teh metod demonstriramo prednosti in slabosti uporabe hiperelipsoidov kot alternativi hiperkvadra pri izbiri omejujočih teles. Pri nekaterih množicah dopustnih parametrov vodi manjši volumen omejujočega hiperelipsoida k redukciji potrebnih vzorčenj Monte Carlo za več kot magnitudo.

Language:Slovenian
Keywords:analiza robustnosti, vzorčenje Monte Carlo, hiperkvader, hiperelipsoid, volumen, sintezna biologija, modeliranje, simulacija
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2020
PID:20.500.12556/RUL-120063 This link opens in a new window
COBISS.SI-ID:31471363 This link opens in a new window
Publication date in RUL:15.09.2020
Views:1538
Downloads:270
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Robustness assessment of the biological processor using hyperellipsoids
Abstract:
As part of this thesis, we present extentions of the current methods for the analysis of the robustness of synthetic biological systems. We demonstrate the new methods on a proposed programmable biological processor. The robustness is calculated using the volume of the body of viable parameters in high dimensional space. This volume is estimated using a genetic algorithm, principal component analysis and lastly Monte Carlo method. We demonstrate the importance the minimum enclosing body has on the efficiency of our method. Thus we focus our attention on improving the fitting of the enclosing body around the viable points. Instead of hypercuboids we demonstrate the advantages of the usage of hyperellipsoids as a viable alternative. For this purpose, a method for random uniform sampling inside of hyperellipsoid is implemented. Two competing methods of finding the minimum volume enclosing ellipsoids are also compared. We demonstrate the usefulness of the hyperellipsoid methods over the hypercuboid approach using the data provided by the biological processor model. In some cases, the ellipsoid approach is shown to reduce the number of required samplings by almost a magnitude.

Keywords:robustness analysis, Monte Carlo sampling, hypercuboid, hyperellipsoid, volume, synthetic biology, modelling, simulation

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back