izpis_h1_title_alt

Slike nekomutativnih polinomov : delo diplomskega seminarja
ID Vitas, Daniel (Author), ID Brešar, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (454,62 KB)
MD5: A62AED4B94E7835BE15E6A45EEE1F5CF

Abstract
Naj bo $f(X_1, \ldots, X_n)$ neničeln multilinearen nekomutativen polinom. Če je $A$ enotska algebra s surjektivnim notranjim odvajanjem, lahko vsak element iz $A$ zapišemo kot $f(a_1, \ldots, a_n)$ za neke $a_i \in A$.

Language:Slovenian
Keywords:multilinearen nekomutativen polinom, surjektivno notranje odvajanje, L'vov-Kaplanskyjeva domneva
Work type:Final seminar paper
Typology:2.11 - Undergraduate Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2020
PID:20.500.12556/RUL-119935 This link opens in a new window
UDC:512.622
COBISS.SI-ID:58831363 This link opens in a new window
Publication date in RUL:13.09.2020
Views:1304
Downloads:233
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Images of noncommutative polynomials
Abstract:
Let $f(X_1, \ldots, X_n)$ be a nonzero multilinear noncommutative polynomial. If $A$ is a unital algebra with a surjective inner derivation, then every element in $A$ can be written as $f(a_1, \ldots, a_n)$ for some $a_i \in A$.

Keywords:multilinear noncommutative polynomial, surjective inner derivation, L'vov-Kaplansky conjecture

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back