Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Slike nekomutativnih polinomov : delo diplomskega seminarja
ID
Vitas, Daniel
(
Author
),
ID
Brešar, Matej
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(454,62 KB)
MD5: A62AED4B94E7835BE15E6A45EEE1F5CF
Image galllery
Abstract
Naj bo $f(X_1, \ldots, X_n)$ neničeln multilinearen nekomutativen polinom. Če je $A$ enotska algebra s surjektivnim notranjim odvajanjem, lahko vsak element iz $A$ zapišemo kot $f(a_1, \ldots, a_n)$ za neke $a_i \in A$.
Language:
Slovenian
Keywords:
multilinearen nekomutativen polinom
,
surjektivno notranje odvajanje
,
L'vov-Kaplanskyjeva domneva
Work type:
Final seminar paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FMF - Faculty of Mathematics and Physics
Year:
2020
PID:
20.500.12556/RUL-119935
UDC:
512.622
COBISS.SI-ID:
58831363
Publication date in RUL:
13.09.2020
Views:
1304
Downloads:
233
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
Images of noncommutative polynomials
Abstract:
Let $f(X_1, \ldots, X_n)$ be a nonzero multilinear noncommutative polynomial. If $A$ is a unital algebra with a surjective inner derivation, then every element in $A$ can be written as $f(a_1, \ldots, a_n)$ for some $a_i \in A$.
Keywords:
multilinear noncommutative polynomial
,
surjective inner derivation
,
L'vov-Kaplansky conjecture
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back