Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Kompresija video posnetkov z nevronskimi mrežami
ID
Pelicon, Jan
(
Author
),
ID
Čehovin Zajc, Luka
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(4,24 MB)
MD5: 6AEADECBBB5E9FA300D9A5BE3FF1852D
Image galllery
Abstract
Diplomsko delo obravnava video kompresijo z uporabo nevronskih mrež. V zadnjih letih se je namreč z napredkom strojnega učenja pojavila ideja, da bi se kompresijo slikovnih in video podatkov lahko naučili z ustrezno arhitekturo nevronske mreže in veliko količino učnih podatkov. V nalogi smo se osredotočili na uporabo konvolucijskih samokodirnikov, ki slikovne podatke iz vhodnega prostora preslikajo v bolj kompakten latentni prostor ter nazaj. Predstavimo dva pristopa za kompresijo podatkov, prvi ima za cilj zgolj kompresijo posameznih slik, drugi pa predstavlja nadgradnjo v smeri video kompresije, ki sledi klasičnemu pristopu napovedovanja gibanja delov slike ter kodiranju popravkov. Opisali smo uporabljene arhitekture ter postopek učenja in testiranja. Več pozornosti smo posvetili operaciji kvantizacije, ki je pomemben element preko katerega kontroliramo nivo kompresije in kvaliteto rekonstrukcije. Testirali smo osnovno implementacijo in primerjali zmogljivost v primerjavi z JPEG formatom. Za testiranje druge implementacije smo si izbrali dve konfiguraciji, ju testirali pri različnih parametrih in primerjali s standardnimi kodeki za video kompresijo. Čeprav sta oba pristopa učinkovito kompresirala podatke, nista dosegala trenutnih standardov, zato predstavimo možne izboljšave, s katerimi bi se približali trenutnim standardom.
Language:
Slovenian
Keywords:
video kompresija
,
konvolucijske nevronske mreže
,
samokodirniki
,
kompresijsko ogrodje
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2020
PID:
20.500.12556/RUL-119837
COBISS.SI-ID:
30808835
Publication date in RUL:
11.09.2020
Views:
1883
Downloads:
252
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PELICON, Jan, 2020,
Kompresija video posnetkov z nevronskimi mrežami
[online]. Bachelor’s thesis. [Accessed 24 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=119837
Copy citation
Share:
Secondary language
Language:
English
Title:
Video compression using neural networks
Abstract:
This bachelor's thesis uses neural networks to compress video. Due to improvements in deep learning, a new idea appeared. Neural networks can learn to compress image and video data using large training sets and appropriate architecture. In the thesis, we used convolutional autoencoders that can transform input data into smaller latent space. We present two approaches to compression. The first one is designed to compress images, while the second is improved to compress video material. It is based on the classic approach of predicting movement in a scene and has error correction. We described used architectures and processes of learning and testing. We focused more on a quantization operation which is an important element for controlling compression ratio and quality. We evaluated the first approach and compared it with the JPEG image compression format. We chose two different configurations for the second approach, tested them using multiple parameters, and compared results with performances of standard codecs. Although both approaches are capable of efficient compression, they can not compete with today's standards. Because of this, we also mentioned some novelties that could significantly improve performance.
Keywords:
video compression
,
convolutional neural networks
,
autoencoders
,
compression framework
Similar documents
Similar works from RUL:
Časovne vrste in razvrščanje z zavrnitvijo
Hand Segmentation for Augmented Reality
Pomoč pri igranju klavirja z obogateno resničnostjo
Interpolacija odsevnih sond za hitro upodabljanje odsevnih materialov
Zaznavanje gest v video tokovih na vgrajeni napravi
Similar works from other Slovenian collections:
No similar works found
Back